scholarly journals Combining ability × environment interaction and genetic analysis for agronomic traits in safflower (Carthamus tinctorius L.): biplot as a tool for diallel data

2017 ◽  
Vol 109 (2) ◽  
pp. 229 ◽  
Author(s):  
Pooran Golkar ◽  
Ehsan Shahbazi ◽  
Mojtaba Nouraein

Combining ability × environment interaction is considerable to identify the effect of environment on the combining ability and gene action of the traits to select appropriate parents for safflower hybrid production. The 36 genotype (28 F<sub>2</sub> progenies of eight-parent half-diallel crosses across 8 parental genotypes) of safflower were studied to investigate the mentioned parameters across different geographical regions of Iran. The results indicated significant differences among parents for general and specific combining ability, except for seeds per capitulum across three environments. The overall results indicated that K<sub>21</sub> and Mex.22-191 were excellent parents with greater general combining ability for the improvement of seed yield in safflower. The K<sub>21</sub> × Mex.22-191 hybrid could be, therefore, employed for the production of high seed yield in safflower breeding. The estimates of genetic variance components recommended the importance of additive- dominance genetic effects that contributed to variation in yield per plant. Such gene action expression for seed yield <a href="https://www.google.com/search?espv=2&amp;biw=1024&amp;bih=667&amp;q=define+appetite&amp;sa=X&amp;ved=0ahUKEwiT-vT4n6TMAhXoIpoKHRKqAWQQ_SoIOTAA">needs</a> auxiliary methods based on hybridization and selection for seed yield advancement in safflower.

Author(s):  
Amandeep Singh ◽  
R. K. Mittal ◽  
V. K. Sood ◽  
Kulveer Singh Dhillon ◽  
Shailja Sharma

Background: Urdbean (2n=2x=22), also known as blackgram is an important short duration legume crop belonging to family Fabaceae, widely cultivated in Asia. Urdbean occupies an important position among pulses owing to its high seed protein (25-26%), carbohydrates (60%), fat (15%), minerals, amino acids and vitamins. Owing to its low water requirement, it is also suitable for rainfed conditions. It adapts well to various cropping systems owing to its ability to fix atmospheric nitrogen in symbiosis with soil bacteria, rapid growth and early maturity. Half diallel analysis was adopted in present study to gather information on gca (general combining abilities) and sca (specific combining abilities) of 6 diverse parents and simultaneously estimating various types of gene effects involved in the expression of seed yield and related attributes in urdbean. Methods: The F1’s were developed during 2017 in 9 x 9 half diallel fashion by Sharma et al. 2019 and these F1’s were evaluated. Significant crosses on the basis of gene action and combining ability were selected for further advancement. The experimental material comprised of the six parents and 15 F2’s of a 6 x 6 half diallel cross among six cultivars of urdbean (four are purelines viz., Palampur-93, HPBU-111, DU-1 and KU-553 and rest of the two are advanced and indigenous lines viz., Him Mash-1 and IC-281994). The F2’s along with the parental genotypes were grown in a Randomized block Design (RBD) with three replications at Experimental Farm of the Department of Crop Improvement, COA, CSK HPKV Palampur (H.P.) during Kharif, 2018. Results: The cross combination, Him Mash-1× HPBU-111, was identified the best for high seed yield on the basis of sca. The specific crosses, Palampur-93 × IC-281994, Palampur-93 × KU-553 were good specific combiners for most of the traits viz., plant height, branches per plant, pods per plant, biological yield per plant, seed yield per plant, harvest index, 100-seed weight and crude protein content.


1988 ◽  
Vol 15 (2) ◽  
pp. 69-72 ◽  
Author(s):  
T. E. Michaels

Abstract Seed yield of Valencia peanut (Arachis hypogaea L. ssp. fastigiata Waldron var. fastigiata) cultivars currently grown in Ontario. Canada appears quite sensitive to cooler or shorter than normal growing seasons. High seed yield may be associated with high percentage emergence and early maturity in this unique peanut-growing region. Selection for percentage emergence and maturity was practiced among F2 derived F4 families of five populations. Maturity was determined by percentage of pod yield as sound mature seeds Percentage emergence selections and percentage sound mature seed selections were recombined in a Comstock and Robinson design II mating design to develop 16 crosses. F3 and F4 bulk progeny of these Crosses were entered in three trials in two locations. Crosses on average had significantly higher percentage emergence and percentage sound mature seeds than the ancestors at only the coolest, shortest season location. Crosses on average were not significantly different from ancestors for pod or seed yield in any trial. General combining ability (GCA) and its interaction with trial were Significant for all characteristics except percentage emergence for the percentage sound mature seed selections. The GCA x trial interactions appeared to be associated with differences in rainfall and temperature in August and September between the two years. Specific combining ability and its interaction with trial were also significant for all characteristics except emergence.


2016 ◽  
Vol 4 ◽  
pp. 48
Author(s):  
R. Rosales Serna ◽  
D. M. Aguilera Charles ◽  
J. A. Acosta-Gallegos

In the bean breeding program of the semiarid region of Mexico, the selection for seed yield is delayed to late generations. The present study was conducted to measure the level of heterosis, heterobeltiosis and inbreeding depression upon several agronomic traits in segregating populations of rainfed beans. Four populations derived from black seeded parents in the F2 and F3 generations, and seven derived from colored beans in the F3 and F4 generations were sown under rainfed conditions. Parents were also included in the trial. Among the black seeded populations, the one derived from the cross BA T 76 X Negro Qro. showed, in both generations, the highest values for seed yield, total dry matter and heterosis, as well as the highest heterobeltiosis value in the F3 generation. In the colored group, the population derived from the cross 102-M X Bayo Victoria showed the highest values for seed yield and heterosis in both generations, and was the only one that showed heterobeltiosis in both generations. The populations that showed high seed yield and heterosis in the first generation, retained these characteristics in the latter one and were derived from the best parents. The results indicate that in dry beans it is possible to predict the best crosses and to identify the high yielding populations in early generations.


Author(s):  
B. C. Nandeshwar ◽  
Beka Biri ◽  
Alemayehu Dugassa

Combining ability analysis provides information about the gene action involved in the expression of a trait and facilitates breeding of superior cultivars. Hence, 45 hybrids evolved from 10 parent half-diallel were evaluated for combining ability to identify good general combiners and superior cross combinations for high ethanol yield from sweet sorghum. RSSV-21-2 has been identified as the best general combiner. It can be used in pedigree breeding programme for the incorporation of desired traits for enhancing ethanol yield. ARS-SS-35-1 × NSS-218 and ARS-SS-83 × NSS-221-2 have been identified as the best specific combinations. These could be exploited in heterosis breeding programme.


1994 ◽  
Vol 122 (2) ◽  
pp. 275-284 ◽  
Author(s):  
J. W. White ◽  
J. A. Castillo ◽  
J. R. Ehleringer ◽  
J. A. C. Garcia ◽  
S. P. Singh

SUMMARYAlthough direct selection for seed yield under water deficit can result in genetic gains in the common bean (Phaseolus vulgaris L.), progress could be enhanced through selection for additional traits that are related to underlying mechanisms of adaptation to water deficit. Carbon isotope discrimination (Δ) has received considerable attention as an indicator of water use efficiency and adaptation to water deficit. To test the utility of Δ as a selection criterion, Δ and other traits were measured in F2 and F3 generations of a nine-parent diallel grown under rainfed conditions at two locations in Colombia with contrasting soil types. An irrigated trial was also conducted at one location. Significant (P 0·05) differences among parents, F2 and F3 were found for carbon isotope discrimination (Δ), leaf optical density (OD), leaf nitrogen (N) and potassium (K) concentrations, relative duration of pod-filling period (RDPF), shoot dry weight (SDW) and harvest index (HI). Effect of location and water regime and their interactions with genotype were also frequently significant. Heritability estimates, determined by regressing the F3 on the F2, ranged from 0·11±011 (S.E.) to 0·33 ±0·10 for OD, 0·22 ± 0·07 to 0·44±0·09 for N, 0·04±0·05 to 0·29±0·08 for K, 0·40 ± 0·08 to 0·43 ± 0·15 for RDPF and 0·30±0·22 to 1·00±0·24 for SDW. All values for Δ and HI did not differ significantly from zero. Correlations between seed yield and OD and RDPF were negative, whereas those with N, K, SDW, and HI were positive. For all traits, mean square values for general combining ability (GCA) were usuall significant and larger than those for specific combining ability (SCA). All significant GCA effects for Δ for ‘Rio Tibagi’, ‘San Cristobal 83’ and ‘Apetito’ were negative, while those for ‘Bayo Rio Grande’, ‘Bayo Criollo del Llano’, ‘Durango 222’ and BAT1224 were positive. Although Δappears unsuitable as an indirect criterion for selection for yield under water deficit, further study of genotypes exhibiting contrasting values of A might reveal differences in mechanisms of adaptation to water deficits, thus leading to other selection criteria or identification of valuable parental lines.


2016 ◽  
Vol 8 (11) ◽  
pp. 138 ◽  
Author(s):  
Lawrence Owere ◽  
Pangirayi Tongoona ◽  
John Derera ◽  
Nelson Wanyera

<p>Blast disease is the most important biotic constraint to finger millet production. Therefore disease resistant varieties are required. However, there is limited information on combining ability for resistance and indeed other agronomic traits of the germplasm in Uganda. This study was carried out to estimate the combining ability and gene effects controlling blast disease resistance and selected agronomic traits in finger millet. Thirty six crosses were generated from a 9 × 9 half diallel mating design. The seed from the 36 F<sub>1</sub> crosses were advanced by selfing and the F<sub>2</sub> families and their parents were evaluated in three replications. General combining ability (GCA) for head blast resistance and the other agronomic traits were all highly significant (p ≤ 0.01), whereas specific combining ability (SCA) was highly significant for all traits except grain yield and grain mass head<sup>-1</sup>. On partitioning the mean sum of squares, the GCA values ranged from 31.65% to 53.05% for head blast incidence and severity respectively, and 36.18% to 77.22% for the other agronomic traits measured. Additive gene effects were found to be predominant for head blast severity, days to 50% flowering, grain yield, number of productive tillers plant<sup>-1</sup>, grain mass head<sup>-1</sup>, plant height and panicle length. Non-additive gene action was predominant for number of fingers head<sup>-1</sup>, finger width and panicle width. The parents which contributed towards high yield were <em>Seremi 2</em>, <em>Achaki</em>, <em>Otunduru</em>, <em>Bulo</em> and <em>Amumwari</em>. Generally, highly significant additive gene action implied that progress would be made through selection whereas non-additive gene action could slow selection progress and indicated selection in the later generations.</p>


Author(s):  
M Sen ◽  
D K De

Combining ability analysis was carried out in an 8x8 half-diallel fashion in mungbean to understand the combining ability, nature of gene action for thirteen yield and its components in 28 hybrids and their 8 parents. These 8 genotypes were already classified into drought tolerant and drought susceptible types from a laboratory study where PEG (6000) (-3) bar was used to impose drought stress against control for studying the seedling characters. The analysis of variance due to combining ability for the thirteen yield attributing traits in F1 population and their parents revealed that variances due to GCA and SCA were highly significant for all the characters indicating that these traits were controlled by both additive and non-additive gene action. Results also showed that cross combinations producing significantly superior SCA effect generally involved one of the parents with good GCA effect and the other had been either medium or poor combiner. Transgressive breeding has been opined to be useful in such cases. After compilation of the results it was found that only two cross combinations viz. SML-286(S) x B-1(T) and PDM-54(T) x K-851(T) were superior performers with respect to 7 and 5 characters including yield. Therefore, progeny of these two crosses may be pursued for obtaining lines with higher yield and tolerance to drought.


Author(s):  
Gbemisola Oluwayemisi Ige ◽  
Godfree Chigeza ◽  
Subhash Chander ◽  
Abebe Tesfaye Abush ◽  
David Kolawole Ojo ◽  
...  

Crosses were made in line × tester mating design between a set of five IITA soybean released varieties and three plant introduced (PI) accessions obtained from World Vegetable Center, Taiwan. In order to produce sufficient seeds, F1 crosses were selfed, subsequently F2 populations along with their parents were planted in a randomized complete block design at two locations in Nigeria with three replications. Agronomic traits viz. days to flowering, days to poding, plant height, number of pods/plant and seed yield/plant were measured. Testers and lines showed significant differences for all the measured traits except days to flowering for testers. Considering the significance and magnitude of general combining ability (GCA) effect, line TGx 1988-5F was observed desirable for earliness, while line TGx 1989-19F was the best combiner for number of pods/plant and seed yield/plant. On the other hand, best tester for seed yield was PI 230970. Crosses TGx 1835-10E × PI 459025B and TGx 1987-62F × PI 459025B had significant and highest SCA effect for seed yield/plant. These two crosses appeared to be most promising for soybean yield improvement programme.


Author(s):  
Ranjana Patial ◽  
R. K. Mittal ◽  
V. K. Sood ◽  
Shahnawaz Ahmed

An experiment was carried out in blackgram using line x tester mating design to estimate the GCA effect of parents and SCA effect of 54 hybrids for yield and its traits using 27 lines and two testers. The relative estimates of variance due to specific combining ability (SCA) were higher than general combining ability (GCA) variances for all twelve traits, indicating predominance of non-additive gene action. Combining ability estimates showed significant genetic variance in lines for all traits whereas testers had significant genetic variance for nine traits. On the basis of GCA effects, among the lines and testers IC-436910, IC-413306, IC-398973, IC-343885 and HPBU-111 respectively, were good combiners for most of the traits and can be used in future breeding programme. Specific combining ability studies indicated cross IC-436910 x HPBU-111 as best specific combiner for the economically important traits viz., plant height, branches per plant, seed yield per plant and days to 75% maturity. Such crosses could be further exploited to obtain transgressive segregants in future breeding programme.


Sign in / Sign up

Export Citation Format

Share Document