scholarly journals Evaluation of the Antithrombotic Effects of Rivaroxaban and Apixaban Using the Total Thrombus-Formation Analysis System®: In Vitro and Ex Vivo Studies

2016 ◽  
Vol 8 (12) ◽  
pp. 899-907 ◽  
Author(s):  
Hidekazu Sugihara ◽  
Yoshiaki Idemoto ◽  
Takashi Kuwano ◽  
Yoshihisa Nagata ◽  
Joji Morii ◽  
...  
1995 ◽  
Vol 73 (02) ◽  
pp. 318-323 ◽  
Author(s):  
K Azzam ◽  
L I Garfinkel ◽  
C Bal dit Sollier ◽  
M Cisse Thiam ◽  
L Drouet

SummaryTo assess the antithrombotic effectiveness of blocking the platelet glycoprotein (GP) Ib/IX receptor for von Willebrand factor (vWF), the antiaggregating and antithrombotic effects were studied in guinea pigs using a recombinant fragment of vWF, Leu 504-Lys 728 with a single intrachain disulfide bond linking residues Cys 509-Cys 695. The inhibitory effect of this peptide, named VCL, was tested in vitro on ristocetin- and botrocetin-induced platelet aggregation and compared to the ADP-induced platelet aggregation. In vivo, the antithrombotic effect of VCL was tested in a model of laser-injured mesentery small arteries and correlated to the ex vivo ristocetin-induced platelet aggregation. In this model of laser-induced thrombus formation, five mesenteric arteries were studied in each animal, and the number of recurrent thrombi during 15 min, the time to visualization and time to formation of first thrombus were recorded.In vitro, VCL totally abolished ristocetin- and botrocetin-induced platelet aggregation, but had no effect on ADP-induced platelet aggregation. Ex vivo, VCL (0.5 to 2 mg/kg) administered as a bolus i. v. injection inhibits ristocetin-induced platelet aggregation with a duration of action exceeding 1 h. The maximum inhibition was observed 5 min after injection of VCL and was dose related. The same doses of VCL had no significant effect on platelet count and bleeding time. In vivo, VCL (0.5 to 2 mg/kg) had no effect on the appearance of the thrombi formed but produced dose-dependent inhibition of the mean number of recurrent thrombi (the maximal effect was obtained at 5 min following i. v. injection of the highest dose: 0.8 ± 0.2 thrombi versus 4 ± 0.4 thrombi in controls). The three doses of VCL increased the time in which the first thrombus in a concentration-dependent manner was formed. However, the time to visualize the first thrombus was only prolonged in the higher dose-treated group.These in-vivo studies confirm that VCL induces immediate, potent, and transient antithrombotic effects. Most importantly, this inhibition was achieved without inducing thrombocytopenia nor prolongation of the bleeding time.


Blood ◽  
1994 ◽  
Vol 83 (11) ◽  
pp. 3218-3224 ◽  
Author(s):  
Y Cadroy ◽  
SR Hanson ◽  
AB Kelly ◽  
UM Marzec ◽  
BL Evatt ◽  
...  

Abstract The relative antithrombotic effectiveness of targeting glycoprotein (GP) Ib-dependent versus GPIIb-IIIa-dependent platelet interactions has been determined in baboons by measuring thrombus formation after infusing comparable antihemostatic doses of anti-von Willebrand factor (vWF) monoclonal antibody (MoAb) BB3-BD5, anti-GPIb MoAb AP1, and anti- GPIIb-IIIa MoAb LJ-CP8 under conditions of arterial and venous flow (shear rates of 750 to 1,000 seconds-1 and 100 seconds-1, respectively). Thrombus formation was quantified as 111In-platelet deposition and 125I-fibrin accumulation on segments of collagen-coated tubing interposed in chronic exteriorized arteriovenous (AV) shunts for 40 minutes. In vitro, anti-vWF MoAb BB3 BD5 (IgG) and anti-GPIb MoAb AP1 [IgG or F(ab)2 fragments] inhibited ristocetin-induced platelet aggregation (IC50 50 nmol/L and 1 mumol/L, respectively), but neither of these MoAbs blocked platelet aggregation induced by adenosine diphosphate (ADP) (P > .5). Conversely, anti-GPIIb-IIIa MoAb LJ-CP8 inhibited platelet aggregation induced by ADP (IC50 1 mumol/L, but failed to block ristocetin-induced platelet aggregation (P > .5). In vivo, the intravenous infusion of anti-vWF MoAb BB3 BD5 or anti-GPIIb- IIIa MoAb LJ-CP8 into baboons at doses that abolished corresponding agonist-induced aggregation ex vivo (bolus injections of 0.5 mg/kg and 10 mg/kg, respectively) prolonged template bleeding times from baseline values of 4.0 +/- 0.3 minutes to > 27 +/- 4 minutes, and to > 26 +/- 4 minutes, respectively (P 3 .001 in both cases), without affecting the peripheral platelet count (P > .5). However, injection of anti-GPIb MoAb AP1 [10 mg/kg as IgG or 1 mg/kg as F(ab)2 fragments] produced immediate irreversible thrombocytopenia (< 40,000 platelets/microL). Anti-GPIIb-IIIa MoAb LJ-CP8 abolished platelet deposition and fibrin accumulation on collagen segments under both arterial and venous flow conditions (P < .01 in all cases), whereas MoAb BB3 BD5 produced minimal inhibition of platelet deposition and no decrease in fibrin accumulation at arterial shear rates and undetectable antithrombotic outcomes at low shear. Thus, inhibiting GPIIb-IIIa-dependent platelet recruitment abrogates both thrombus formation and platelet hemostatic function at both venous and arterial shear rates. By contrast, interfering with GPIb-vWF-dependent platelet interactions abolishes platelet hemostatic function without producing corresponding antithrombotic effects.


Blood ◽  
1994 ◽  
Vol 83 (11) ◽  
pp. 3218-3224 ◽  
Author(s):  
Y Cadroy ◽  
SR Hanson ◽  
AB Kelly ◽  
UM Marzec ◽  
BL Evatt ◽  
...  

The relative antithrombotic effectiveness of targeting glycoprotein (GP) Ib-dependent versus GPIIb-IIIa-dependent platelet interactions has been determined in baboons by measuring thrombus formation after infusing comparable antihemostatic doses of anti-von Willebrand factor (vWF) monoclonal antibody (MoAb) BB3-BD5, anti-GPIb MoAb AP1, and anti- GPIIb-IIIa MoAb LJ-CP8 under conditions of arterial and venous flow (shear rates of 750 to 1,000 seconds-1 and 100 seconds-1, respectively). Thrombus formation was quantified as 111In-platelet deposition and 125I-fibrin accumulation on segments of collagen-coated tubing interposed in chronic exteriorized arteriovenous (AV) shunts for 40 minutes. In vitro, anti-vWF MoAb BB3 BD5 (IgG) and anti-GPIb MoAb AP1 [IgG or F(ab)2 fragments] inhibited ristocetin-induced platelet aggregation (IC50 50 nmol/L and 1 mumol/L, respectively), but neither of these MoAbs blocked platelet aggregation induced by adenosine diphosphate (ADP) (P > .5). Conversely, anti-GPIIb-IIIa MoAb LJ-CP8 inhibited platelet aggregation induced by ADP (IC50 1 mumol/L, but failed to block ristocetin-induced platelet aggregation (P > .5). In vivo, the intravenous infusion of anti-vWF MoAb BB3 BD5 or anti-GPIIb- IIIa MoAb LJ-CP8 into baboons at doses that abolished corresponding agonist-induced aggregation ex vivo (bolus injections of 0.5 mg/kg and 10 mg/kg, respectively) prolonged template bleeding times from baseline values of 4.0 +/- 0.3 minutes to > 27 +/- 4 minutes, and to > 26 +/- 4 minutes, respectively (P 3 .001 in both cases), without affecting the peripheral platelet count (P > .5). However, injection of anti-GPIb MoAb AP1 [10 mg/kg as IgG or 1 mg/kg as F(ab)2 fragments] produced immediate irreversible thrombocytopenia (< 40,000 platelets/microL). Anti-GPIIb-IIIa MoAb LJ-CP8 abolished platelet deposition and fibrin accumulation on collagen segments under both arterial and venous flow conditions (P < .01 in all cases), whereas MoAb BB3 BD5 produced minimal inhibition of platelet deposition and no decrease in fibrin accumulation at arterial shear rates and undetectable antithrombotic outcomes at low shear. Thus, inhibiting GPIIb-IIIa-dependent platelet recruitment abrogates both thrombus formation and platelet hemostatic function at both venous and arterial shear rates. By contrast, interfering with GPIb-vWF-dependent platelet interactions abolishes platelet hemostatic function without producing corresponding antithrombotic effects.


1994 ◽  
Vol 71 (01) ◽  
pp. 095-102 ◽  
Author(s):  
Désiré Collen ◽  
Hua Rong Lu ◽  
Jean-Marie Stassen ◽  
Ingrid Vreys ◽  
Tsunehiro Yasuda ◽  
...  

SummaryCyclic Arg-Gly-Asp (RGD) containing synthetic peptides such as L-cysteine, N-(mercaptoacetyl)-D-tyrosyl-L-arginylglycyl-L-a-aspartyl-cyclic (1→5)-sulfide, 5-oxide (G4120) and acetyl-L-cysteinyl-L-asparaginyl-L-prolyl-L-arginyl-glycyl-L-α-aspartyl-[0-methyltyrosyl]-L-arginyl-L-cysteinamide, cyclic 1→9-sulfide (TP9201) bind with high affinity to the platelet GPIIb/IIIa receptor.The relationship between antithrombotic effect, ex vivo platelet aggregation and bleeding time prolongation with both agents was studied in hamsters with a standardized femoral vein endothelial cell injury predisposing to platelet-rich mural thrombosis, and in dogs with a carotid arterial eversion graft inserted in the femoral artery. Intravenous administration of G4120 in hamsters inhibited in vivo thrombus formation with a 50% inhibitory bolus dose (ID50) of approximately 20 μg/kg, ex vivo ADP-induccd platelet aggregation with ID50 of 10 μg/kg, and bolus injection of 1 mg/kg prolonged the bleeding time from 38 ± 9 to 1,100 ± 330 s. Administration of TP9201 in hamsters inhibited in vivo thrombus formation with ID50 of 30 μg/kg, ex vivo platelet aggregation with an ID50 of 50 μg/kg and bolus injection of 1 mg/kg did not prolong the template bleeding time. In the dog eversion graft model, infusion of 100 μg/kg of G4120 over 60 min did not fully inhibit platelet-mediated thrombotic occlusion but was associated with inhibition of ADP-induccd ex vivo platelet aggregation and with prolongation of the template bleeding time from 1.3 ± 0.4 to 12 ± 2 min. Infusion of 300 μg/kg of TP9201 over 60 min completely prevented thrombotic occlusion, inhibited ex vivo platelet aggregation, but was not associated with prolongation of the template bleeding time.TP9201, unlike G4120, inhibits in vivo platelet-mediated thrombus formation without associated prolongation of the template bleeding time.


Blood ◽  
1998 ◽  
Vol 91 (11) ◽  
pp. 4197-4205 ◽  
Author(s):  
J.M. Herbert ◽  
J.P. Hérault ◽  
A. Bernat ◽  
R.G.M. van Amsterdam ◽  
J.C. Lormeau ◽  
...  

Abstract SANORG 34006 is a new sulfated pentasaccharide obtained by chemical synthesis. It is an analog of the “synthetic pentasaccharide” (SR 90107/ ORG 31540) which represents the antithrombin (AT) binding site of heparin. SANORG 34006 showed a higher affinity to human AT than SR 90107/ORG 31540 (kd = 1.4 ± 0.3 v 48 ± 11 nmol/L), and it is a potent and selective catalyst of the inhibitory effect of AT on factor Xa (1,240 ± 15 anti–factor Xa U/mg v850 ± 27 anti-factor Xa U/mg for SR 90107/ORG 31540). In vitro, SANORG 34006 inhibited thrombin generation occurring via both the extrinsic and intrinsic pathway. After intravenous (IV) or subcutaneous (SC) administration to rabbits, SANORG 34006 displayed a long-lasting anti–factor Xa activity and inhibition of thrombin generation (TG) ex vivo. SANORG 34006 was slowly eliminated after IV or SC administration to rats, rabbits, and baboons, showed exceptionally long half-lives (between 9.2 hours in rats and 61.9 hours in baboons), and revealed an SC bioavailability near 100%. SANORG 34006 displayed antithrombotic activity by virtue of its potentiation of the anti–factor Xa activity of AT. It strongly inhibited thrombus formation in experimental models of thromboplastin/stasis-induced venous thrombosis in rats (IV) and rabbits (SC) (ED50values = 40.0 ± 3.4 and 105.0 ± 9.4 nmol/kg, respectively). The duration of its antithrombotic effects closely paralleled the ex vivo anti–factor Xa activity. SANORG 34006 enhanced rt-PA–induced thrombolysis and inhibited accretion of125I-fibrinogen onto a preformed thrombus in the rabbit jugular vein suggesting that concomitant use of SANORG 34006 during rt-PA therapy might be helpful in facilitating thrombolysis and preventing fibrin accretion onto the thrombus under lysis. Contrary to standard heparin, SANORG 34006 did not enhance bleeding in a rabbit ear incision model at a dose that equals 10 times the antithrombotic ED50 in this species and, therefore, exhibited a favorable therapeutic index. We suggest that SANORG 34006 is a promising compound in the treatment and prevention of various thrombotic diseases.


Author(s):  
Sistiana Aiello ◽  
Sara Gastoldi ◽  
Miriam Galbusera ◽  
Piero Luigi Ruggenenti ◽  
Valentina Portalupi ◽  
...  

Unrestrained activation of the complement system till the terminal products, C5a and C5b-9, plays a pathogenetic role in acute and chronic inflammatory diseases. In endothelial cells, complement hyperactivation may translate into cell dysfunction, favoring thrombus formation. The aim of this study was to investigate the role of the C5a/C5aR1 axis as opposite to C5b-9 in inducing endothelial dysfunction and loss of anti-thrombogenic properties. In vitro and ex vivo assays with serum from patients with atypical hemolytic uremic syndrome (aHUS) -a prototype rare disease of complement-mediated microvascular thrombosis due to genetically determined alternative pathway dysregulation- and cultured microvascular endothelial cells, demonstrated that the C5a/C5aR1 axis is a key player of endothelial thromboresistance loss. C5a added to normal human serum, fully recapitulated the pro-thrombotic effects of aHUS serum. Mechanistic studies showed that C5a caused RalA-mediated exocytosis of vWF and P-selectin from Weibel-Palade bodies, which favored further vWF binding on the endothelium and platelet adhesion and aggregation. In patients with severe COVID-19 -who suffered from acute activation of complement triggered by SARS-CoV-2 infection- we found the same C5a-dependent pathogenic mechanisms. These results highlight C5a/C5aR1 as a common pro-thrombogenic effector spanning from genetic rare diseases to viral infections, and may have clinical implications. Selective C5a/C5aR1 blockade could have advantages over C5 inhibition, since the former preserves the formation of C5b-9 that is critical to control bacterial infections that often develop as comorbidities in severely ill patients. (Clinicaltrials.gov identifier NCT02464891)


Blood ◽  
1986 ◽  
Vol 68 (3) ◽  
pp. 783-786 ◽  
Author(s):  
BS Coller ◽  
JD Folts ◽  
LE Scudder ◽  
SR Smith

A murine monoclonal antibody directed at the platelet glycoprotein IIb/IIIa complex, which blocks platelet aggregation ex vivo, was tested for its antithrombotic effects in an established animal model of acute platelet thrombus formation in partially stenosed arteries. Infusion of 0.7 to 0.8 mg/kg of the F(ab')2 fragment of the antibody completely blocked new thrombus formation despite multiple provocations, making it the most potent antithrombotic agent tested in this model.


Author(s):  
Dina Vara ◽  
Reiner K. Mailer ◽  
Anuradha Tarafdar ◽  
Nina Wolska ◽  
Marco Heestermans ◽  
...  

Objective: Using 3KO (triple NOX [NADPH oxidase] knockout) mice (ie, NOX1 −/− /NOX2 −/− /NOX4 −/− ), we aimed to clarify the role of this family of enzymes in the regulation of platelets in vitro and hemostasis in vivo. Approach and Results: 3KO mice displayed significantly reduced platelet superoxide radical generation, which was associated with impaired platelet aggregation, adhesion, and thrombus formation in response to the key agonists collagen and thrombin. A comparison with single-gene knockouts suggested that the phenotype of 3KO platelets is the combination of the effects of the genetic deletion of NOX1 and NOX2, while NOX4 does not show any significant function in platelet regulation. 3KO platelets displayed significantly higher levels of cGMP—a negative platelet regulator that activates PKG (protein kinase G). The inhibition of PKG substantially but only partially rescued the defective phenotype of 3KO platelets, which are responsive to both collagen and thrombin in the presence of the PKG inhibitors KT5823 or Rp-8-pCPT-cGMPs, but not in the presence of the NOS (NO synthase) inhibitor L-NG-monomethyl arginine. In vivo, triple NOX deficiency protected against ferric chloride–driven carotid artery thrombosis and experimental pulmonary embolism, while hemostasis tested in a tail-tip transection assay was not affected. Procoagulatory activity of platelets (ie, phosphatidylserine surface exposure) and the coagulation cascade in platelet-free plasma were normal. Conclusions: This study indicates that inhibiting NOXs has strong antithrombotic effects partially caused by increased intracellular cGMP but spares hemostasis. NOXs are, therefore, pharmacotherapeutic targets to develop new antithrombotic drugs without bleeding side effects.


Blood ◽  
2005 ◽  
Vol 106 (11) ◽  
pp. 1874-1874 ◽  
Author(s):  
Toshio Fukuda ◽  
Yuko Honda ◽  
Chikako Matsumoto ◽  
Nobutoshi Sugiyama ◽  
Tadashi Matsushita ◽  
...  

Abstract Antithrombin (AT) is a major physiological inhibitor of coagulation factors, primarily inhibiting thrombin and factor Xa (FXa). Binding of heparin and its related pentasaccharides, fondaparinux, to AT dramatically accelerates inhibition of thrombin and FXa. Entire AT-dependency of heparins may result in decreased anticoagulant effects in patients with inherited or acquired AT deficiencies. Objectives: We have developed an orally active direct (i.e. AT-independent) FXa inhibitor, DU-176b. The objectives of this study were to examine the anticoagulant and antithrombotic effects of DU-176b, fondaparinux, and heparin in heterozygous AT deficient (AT+/−) mice (Refs 1, 2), and to determine the impact of AT deficiency on the efficacies of these anticoagulants. Methods: [In vitro study] Plasma obtained from wild type (AT+/+, C57BL/6J) and AT+/− mice were subjected to measurement of levels of AT antigen and activity. The anticoagulant effects on prothrombin time (PT) and activated partial thromboplastin time (APTT) was measured and the drug concentrations were calculated required to double the clotting time (CT2). [In vivo study] Male AT+/+ and AT+/− mice were fasted over night. Thrombosis was induced in the inferior vena cava by applying filter paper (1 x 5 mm) presoaked in 15% FeCl3 for 10 min. Thrombus was removed 60 min after FeCl3 treatment and its protein content was assessed by Bradford method. DU-176b was orally administered 60 min before, fondaparinux was given s.c. 30 min before, and heparin was injected into the jugular vein 3 min before thrombus induction. Relative potencies of antithrombotic effects in AT+/− mice to those in AT+/+ mice were analyzed by parallel line assay. Results: [In vitro study] Plasma levels of AT antigen and activity in AT+/− mice were deceased to 40% compared with AT+/+ plasma. PT-CT2 of DU-176b was 0.72 μM in AT+/+ plasma and 0.74 μM in AT+/− plasma, respectively, indicating that anticoagulant activity of the direct FXa inhibitor was not affected by heterozygous AT deficiency. APTT-CT2 of fondaparinux and heparin in AT+/+ plasma was 3.8 μM and 14 mU/mL, respectively, whereas APTT-CT2 in AT+/− plasma was 9.2 μM and 20 mU/mL, respectively. Therefore, anticoagulant activities of such AT-dependent inhibitors were attenuated in AT+/− plasma. [In vivo study] All three anticoagulants inhibited venous thrombus formation of AT+/+ mice in dose-dependent manners. In AT+/− mice, the antithrombotic effects of fondaparinux and heparin were less potent than those in AT+/+ mice. In contrast, DU-176b prevented thrombus formation equipotently in both mice. Relative potencies of DU-176b, fondaparinux and heparin were 0.84, 0.40, and 0.70, respectively. Conclusion: DU-176b exerts a comparable antithrombotic effect even in individuals with low plasma AT antigens and activities. Thus, DU-176b may be prioritized over AT-dependent agents for use at the fixed dose in patients with lower plasma AT concentrations.


Blood ◽  
2015 ◽  
Vol 126 (23) ◽  
pp. 3442-3442 ◽  
Author(s):  
Reheman Adili ◽  
Theodore R Holman ◽  
Michael Holinstat

Abstract Background: Adequate platelet reactivity is required for platelet adhesion and aggregation at the site of vascular injury to maintain hemostasis. However, excessive platelet reactivity can also lead to the formation of occlusive thrombi, the predominate underlying cause of myocardial infarction and stroke. While current anti-platelet treatments limit platelet function, they often result in an increased risk of bleeding. 12-lipoxygenase (12-LOX), an oxygenase highly expressed in the platelet, has been demonstrated by our lab and others to regulate PAR4 and GPVI-mediated platelet reactivity suggesting a role of 12-LOX in regulation of vivo thrombosis. However, the ability to pharmacologically target 12-LOX in vivo has not been established to date. Aims: To determine how 12-LOX regulates thrombus formation in vivo and whether platelet 12-LOX is an effective target for anti-platelet therapeutics, wild-type (WT) or 12-LOX deficient (12-LOX-/-) mice were treated with or without the 12-LOX inhibitor, ML355, and were assessed for inhibitory effects on platelet activation in vitro, ex-vivo and in vivo. Methods: The effect of the novel 12-LOX inhibitor ML355 on human platelet function was assessed in vitro by platelet aggregometry, ex vivo by perfusion chamber. In vivo thrombus formation and vessel occlusion in small and large vessels were studied in 12-LOX-/-, WT mice and mice treated with ML355 using intravital microscopy using the FeCl3 injury models. Results: Using in vitro platelet aggregation assays, ML355 dose dependently inhibited thrombin, PAR1-AP, and PAR4-AP-induced aggregation in washed human platelets. Interestingly, the negative regulatory effects of ML355 inhibition of 12-LOX can be overcome by high concentration of thrombin. Additionally, ML355 was able to attenuate ADP-induced platelet aggregation both in platelet-rich-plasma and whole blood. In ex vivo flow chamber assays, platelet adhesion and thrombus formation on collagen-coated surfaces at high shear was attenuated in both mouse and human whole blood after incubation with ML355. Further, platelet aggregation and thrombus growth in 12-LOX-/- mice was impaired in FeCl3-induced mesenteric or carotid artery thrombosis models. Thrombi in 12-LOX-/- mice were unstable and frequently form emboli, which resulted in impaired vessel occlusion or reopening. Additionally, thrombus formation and vessel occlusion was impaired in ML355 treated WT mice. Conclusions: The highly selective 12-LOX inhibitor ML355 inhibits platelets aggregation induced by various platelet agonists and ML355 inhibition of platelet function is not agonist specific. Platelet function at high shear in ex vivo conditions in both mice and human was attenuated in the presence of ML355. Thrombus growth, stability, and vessel occlusion was impaired in mice deficient for 12-LOX. Finally, the highly selective 12-LOX inhibitor ML355 attenuates thrombus formation and prevents vessel occlusion in vivo. Our data strongly indicates 12- LOX is an important determinant of platelet reactivity and inhibition of platelet 12-LOX may represent a new target for anti-platelet therapeutics. Disclosures No relevant conflicts of interest to declare.


Sign in / Sign up

Export Citation Format

Share Document