Realization and Comparison of the Antireflection(AR) Coating in Graded and Quintic Index Profile

2021 ◽  
Vol 19 (12) ◽  
pp. 79-84
Author(s):  
Chang-Bong Kim
Keyword(s):  
1978 ◽  
Vol 14 (14) ◽  
pp. 416 ◽  
Author(s):  
J.P. Hazan ◽  
J.P. Cabanie ◽  
J.J. Bernard
Keyword(s):  

Coatings ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 213
Author(s):  
James J. Price ◽  
Tingge Xu ◽  
Binwei Zhang ◽  
Lin Lin ◽  
Karl W. Koch ◽  
...  

This work presents fundamental understanding of the correlation between nanoindentation hardness and practical scratch resistance for mechanically tunable anti-reflective (AR) hardcoatings. These coatings exhibit a unique design freedom, allowing quasi-continuous variation in the thickness of a central hardcoat layer in the multilayer design, with minimal impact on anti-reflective optical performance. This allows detailed study of anti-reflection coating durability based on variations in hardness vs. depth profiles, without the durability results being confounded by variations in optics. Finite element modeling is shown to be a useful tool for the design and analysis of hardness vs. depth profiles in these multilayer films. Using samples fabricated by reactive sputtering, nanoindentation hardness depth profiles were correlated with practical scratch resistance using three different scratch and abrasion test methods, simulating real world scratch events. Scratch depths from these experiments are shown to correlate to scratches observed in the field from consumer electronics devices with chemically strengthened glass covers. For high practical scratch resistance, coating designs with hardness >15 GPa maintained over depths of 200–800 nm were found to be particularly excellent, which is a substantially greater depth of high hardness than can be achieved using previously common AR coating designs.


Materials ◽  
2021 ◽  
Vol 14 (5) ◽  
pp. 1282
Author(s):  
Victor Reshetnyak ◽  
Igor Pinkevych ◽  
Timothy Bunning ◽  
Dean Evans

This study theoretically investigated light reflection and transmission in a system composed of a thin metal layer (Ag) adjacent to a rugate filter (RF) having a harmonic refractive index profile. Narrow dips in reflectance and peaks in transmittance in the RF band gap were obtained due to the excitation of a Tamm plasmon polariton (TPP) at the Ag–RF interface. It is shown that the spectral position and magnitude of the TPP dips/peaks in the RF band gap depend on the harmonic profile parameters of the RF refractive index, the metal layer thickness, and the external medium refractive index. The obtained dependences for reflectance and transmittance allow selecting parameters of the system which can be optimized for various applications.


2011 ◽  
Vol 22 (07) ◽  
pp. 687-710 ◽  
Author(s):  
THEODOROS P. HORIKIS

A numerical technique is described that can efficiently compute solutions of interface problems. These are problems with data, such as the coefficients of differential equations, discontinuous or even singular across one or more interfaces. A prime example of these problems are optical waveguides, and as such the scheme is applied to Maxwell's equations as they are formulated to describe light confinement in Bragg fibers. It is based on standard finite differences appropriately modified to take into account all possible discontinuities across the waveguide's interfaces due to the change of the refractive index. Second- and fourth-order schemes are described with additional adaptations to handle matrix eigenvalue problems, demanding geometries and defects.


2001 ◽  
Vol 48 (14) ◽  
pp. 2141-2154 ◽  
Author(s):  
José Ramón Salgueiro ◽  
Jesús Liñares ◽  
Vicente Moreno ◽  
María C. Nistal

Sign in / Sign up

Export Citation Format

Share Document