scholarly journals Genome regulation by long non-coding RNAs

2021 ◽  
Vol 26 (A) ◽  
pp. e962
Author(s):  
Katerina Pierouli ◽  
George N. Goulielmos ◽  
Elias Eliopoulos ◽  
Dimitrios Vlachakis
2020 ◽  
Vol 6 (3) ◽  
pp. 39
Author(s):  
Samara M. C. Lemos ◽  
Luiz F. C. Fonçatti ◽  
Romain Guyot ◽  
Alexandre R. Paschoal ◽  
Douglas S. Domingues

Coffea canephora grains are highly traded commodities worldwide. Non-coding RNAs (ncRNAs) are transcriptional products involved in genome regulation, environmental responses, and plant development. There is not an extensive genome-wide analysis that uncovers the ncRNA portion of the C. canephora genome. This study aimed to provide a curated characterization of six ncRNA classes in the Coffea canephora genome. For this purpose, we employed a combination of similarity-based and structural-based computational approaches with stringent curation. Candidate ncRNA loci had expression evidence analyzed using sRNA-seq libraries. We identified 7455 ncRNA loci (6976 with transcriptional evidence) in the C. canephora genome. This comprised of total 115 snRNAs, 1031 snoRNAs, 92 miRNA precursors, 602 tRNAs, 72 rRNAs, and 5064 lncRNAs. For miRNAs, we identified 159 putative high-confidence targets. This study was the most extensive genomic catalog of curated ncRNAs in the Coffea genus. This data might help elaborating more robust hypotheses in future comparative genomic studies as well as gene regulation and genome dynamics, helping to understand the molecular basis of domestication, environmental adaptation, resistance to pests and diseases, and coffee productivity.


2014 ◽  
Vol 226 (02) ◽  
Author(s):  
A van den Berg ◽  
M Tayari ◽  
G Kortman ◽  
J Sietzema ◽  
D de Jong ◽  
...  

2012 ◽  
Vol 153 (52) ◽  
pp. 2051-2059 ◽  
Author(s):  
Zsuzsanna Gaál ◽  
Éva Oláh

MicroRNAs are a class of small non-coding RNAs regulating gene expression at posttranscriptional level. Their target genes include numerous regulators of cell cycle, cell proliferation as well as apoptosis. Therefore, they are implicated in the initiation and progression of cancer, tissue invasion and metastasis formation as well. MicroRNA profiles supply much information about both the origin and the differentiation state of tumours. MicroRNAs also have a key role during haemopoiesis. An altered expression level of those have often been observed in different types of leukemia. There are successful attempts to apply microRNAs in the diagnosis and prognosis of acute lymphoblastic leukemia and acute myeloid leukemia. Measurement of the expression levels may help to predict the success of treatment with different kinds of chemotherapeutic drugs. MicroRNAs are also regarded as promising therapeutic targets, and can contribute to a more personalized therapeutic approach in haemato-oncologic patients. Orv. Hetil., 2012, 153, 2051–2059.


Sign in / Sign up

Export Citation Format

Share Document