Experimental Study for the Optical Cutting Tool Path of High Speed Milling Al-Alloy

2010 ◽  
Vol 33 ◽  
pp. 437-440
Author(s):  
Min Fu ◽  
Chun Wei Chen

In this paper, on the aim of control the fluctuation of cutting force, five kind of commonly used tool paths which were used to milling curved surface were selected to study the optical cutting tool path of high speed milling al-alloy, the results showed that in order to make the fluctuation of cutting force smallest, the tool path which had the more even line spacing along the Machining surface should be chosen according to the characteristic of the Machining surface. In order to minimize the cutting force, the direction with the biggest surface curvature should be chosen, and the direction with the smallest change rate of the surface curvature should be chosen in order to minimize the fluctuations of cutting force.

Author(s):  
Zhiyang Yao ◽  
Ajay Joneja

High speed milling (HSM) has great potential use in die/mold cutting, but traditional machining plans do exploit HSM capabilities effectively. An important consideration in HSM is to limit cutting force variations, and one way to do so is to reduce cutter-workpiece engagement (CWE) variations. CWE is measured as the area of the tool instantaneously engaged with the part. Estimating CWE as a function of the tool path requires repeated, expensive computations. This paper develops algorithms for a discretized computational model to make CWE computations for arbitrary shaped parts.


Author(s):  
Jian-wei Ma ◽  
Zhen-yuan Jia ◽  
Guang-zhi He ◽  
Zhen Liu ◽  
Xiao-xuan Zhao ◽  
...  

High-speed machining provides an efficient approach for machining Inconel 718 with high quality and high efficiency. For high-speed milling of Inconel 718 curved surface, the geometrical characteristics are changing continuously leading to a sharp fluctuation of cutting force, which will aggravate the tool wear. As the wear mechanism of coated cutting tool is seriously affected by the cutting tool geometrical parameters, suitable geometrical parameters of cutting tool should be selected to avoid the cutting tool from being worn out very quickly. In this study, the influence of cutting tool geometrical parameters on tool wear in high-speed milling of Inconel 718 curved surface is investigated with coated cutting tool, and the cutting force in milling process is also analyzed. The results show that the cutting force variation can manifest the tool wear degree, and the failure type of coated cutting tool in plane milling and curved surface milling after the same cutting length is different. Furthermore, the cutting tool geometrical parameters seriously affect the tool wear and the tool life in high-speed milling of Inconel 718 curved surface. Concretely, the small rake angle has greater strength and has superiority, the relief angle increasing can enhance the tool life, and the tool life is decreased with the increasing of helix angle for the cutting tool, whose helix angle is larger than 30°. This study provides a theoretical basis for cutting tool wear mechanism and cutting tool geometrical parameter selection in high-speed milling of Inconel 718 curved surface, so as to guarantee the machining efficiency in high-speed milling of Inconel 718 curved surface.


2016 ◽  
Vol 693 ◽  
pp. 1129-1134
Author(s):  
Zhao Ju Zhu ◽  
Jie Sun ◽  
Lai Xiao Lu

A series of research on the interactions among tool wear, cutting force and cutting vibration were conducted through high speed milling experiment in this paper, which objected the titanium alloy as difficult-to-cut materials. The results showed that the increasing of tool wear led to enlarging the cutting force and cutting vibration; and vice versa, the increasing of cutting force and cutting vibration aggravated the tool wear in the process of machining. Besides, the variation trend of tool wear with cutting was similar to the trend of cutting force, while the variation trend between cutting vibration and tool wear was different. Especially in the sharply cutting tool wear stage, the influence of tool wear on cutting vibration became more complicated.


Author(s):  
Hi K. Lee ◽  
Gyun E. Yang ◽  
Beom S. Ryuh ◽  
Se H. Park

Abstract The optimal tool path for NC milling of a sculptured surface is given on cross sections of the surface, which extends the application of contour tool path from 2 dimensional milling to 3-axis and 5-axis milling. The cutting speed in rough cutting is the main objective of the optimal path. The contour tool path on cross sections of the surface can generate the rough cutting path in high speed without excessive cutting force, chatter and heavy wear of the cutting tool. Also, the path can be expanded to 3 -axis and 5-axis milling for machining of complicated surfaces.


2011 ◽  
Vol 418-420 ◽  
pp. 840-843
Author(s):  
Qing Hua Song ◽  
Xing Ai

The efficiency of the high-speed milling process is often limited by the occurrence of chatter. In order to predict the occurrence of chatter, accurate models are necessary. With the speed increasing, gyroscopic effect plays an important pole on the system behavior, including dynamic characteristic and rotating behavior. Considering the influence of gyroscopic effect on rotating behavior, an updated model for the milling process is presented which features as model of the equivalent profile of tool. In combination with this model, a nonlinear instantaneous cutting force model is proposed. The use of this updated equivalent profile of tool results in significant differences in the static uncut thickness compared to the traditional model.


2011 ◽  
Vol 314-316 ◽  
pp. 1734-1739
Author(s):  
Kai Zhu Li ◽  
Shi Xiong Wu

In order to decrease the radial amout of cutting depth in high speed milling,optimized arc transition has been proposed in corner milling and the circular trochoid model has been used to remove the residual. Mathematical relationship based on radial depth of cutting constrain among tool radius, trochoid radius and tool step length in circular trochoid model have been analyzed .Based on the goal to limiting the radial cutting depth, appropriate parameters have been computed for higher machining quality. To verify the effectiveness of the proposed method, a compared test has been conducted. Experiment shows that optimized tool paths cause a slight increase in machining time but obtain weaker processing vibration and superior machining precision.


2016 ◽  
Vol 836-837 ◽  
pp. 168-174 ◽  
Author(s):  
Ying Fei Ge ◽  
Hai Xiang Huan ◽  
Jiu Hua Xu

High-speed milling tests were performed on vol. (5%-8%) TiCp/TC4 composite in the speed range of 50-250 m/min using PCD tools to nvestigate the cutting temperature and the cutting forces. The results showed that radial depth of cut and cutting speed were the two significant influences that affected the cutting forces based on the Taguchi prediction. Increasing radial depth of cut and feed rate will increase the cutting force while increasing cutting speed will decrease the cutting force. Cutting force increased less than 5% when the reinforcement volume fraction in the composites increased from 0% to 8%. Radial depth of cut was the only significant influence factor on the cutting temperature. Cutting temperature increased with the increasing radial depth of cut, feed rate or cutting speed. The cutting temperature for the titanium composites was 40-90 °C higher than that for the TC4 matrix. However, the cutting temperature decreased by 4% when the reinforcement's volume fraction increased from 5% to 8%.


Sign in / Sign up

Export Citation Format

Share Document