Modelling, identification, implementation and MATLAB simulations of multi-input multi-output proportional integral-plus control strategies for a centrifugal chiller system

Author(s):  
Nicolae Tudoroiu ◽  
Mohammed Zaheeruddin ◽  
Roxana Elena Tudoroiu
Author(s):  
Mervin Joe Thomas ◽  
Shoby George ◽  
Deepak Sreedharan ◽  
ML Joy ◽  
AP Sudheer

The significant challenges seen with the mathematical modeling and control of spatial parallel manipulators are its difficulty in the kinematic formulation and the inability to real-time control. The analytical approaches for the determination of the kinematic solutions are computationally expensive. This is due to the passive joints, solvability issues with non-linear equations, and inherent kinematic constraints within the manipulator architecture. Therefore, this article concentrates on an artificial neural network–based system identification approach to resolve the complexities of mathematical formulations. Moreover, the low computation time with neural networks adds up to its advantage of real-time control. Besides, this article compares the performance of a constant gain proportional–integral–derivative (PID), variable gain proportional–integral–derivative, model predictive controller, and a cascade controller with combined variable proportional–integral–derivative and model predictive controller for real-time tracking of the end-effector. The control strategies are simulated on the Simulink model of a 6-degree-of-freedom 3-PPSS (P—prismatic; S—spherical) parallel manipulator. The simulation and real-time experiments performed on the fabricated manipulator prototype indicate that the proposed cascade controller with position and velocity compensation is an appropriate method for accurate tracking along the desired path. Also, training the network using the experimentally generated data set incorporates the mechanical joint approximations and link deformities present in the fabricated model into the predicted results. In addition, this article showcases the application of Euler–Lagrangian formalism on the 3-PPSS parallel manipulator for its dynamic model incorporating the system constraints. The Lagrangian multipliers include the influence of the constraint forces acting on the manipulator platform. For completeness, the analytical model results have been verified using ADAMS for a pre-defined end-effector trajectory.


Energies ◽  
2020 ◽  
Vol 13 (13) ◽  
pp. 3446 ◽  
Author(s):  
Abdul Latif ◽  
S. M. Suhail Hussain ◽  
Dulal Chandra Das ◽  
Taha Selim Ustun

A renewable and distributed generation (DG)-enabled modern electrified power network with/without energy storage (ES) helps the progress of microgrid development. Frequency regulation is a significant scheme to improve the dynamic response quality of the microgrid under unknown disturbances. This paper established a maiden load frequency regulation of a wind-driven generator (WG), solar tower (ST), bio-diesel power generator (BDPG) and thermostatically controllable load (heat pump and refrigerator)-based, isolated, single-area microgrid system. Hence, intelligent control strategies are important for this issue. A newly developed butterfly algorithmic technique (BOA) is leveraged to tune the controllers’ parameters. However, to attain a proper balance between net power generation and load power, a dual stage proportional-integral- one plus integral-derivative PI − (1 + ID) controller is developed. Comparative system responses (in MATLAB/SIMULINK software) for different scenarios under several controllers, such as a proportional-integral (PI), proportional-integral-derivative (PID) and PI − (1 + ID) controller tuned by particle swarm optimization (PSO), grasshopper algorithmic technique (GOA) and BOA, show the superiority of BOA in terms of minimizing the peak deviations and better frequency regulation of the system. Real recorded wind data are considered to authenticate the control approach.


Energy ◽  
2018 ◽  
Vol 163 ◽  
pp. 1062-1076 ◽  
Author(s):  
Matteo Marchionni ◽  
Giuseppe Bianchi ◽  
Apostolos Karvountzis-Kontakiotis ◽  
Apostolos Pesyridis ◽  
Savvas A. Tassou

Author(s):  
Gyan Wrat ◽  
Prabhat Ranjan ◽  
Mohit Bhola ◽  
Santosh Kumar Mishra ◽  
J Das

The role of hydraulic systems is quite evident especially in the case of heavy machineries employed in industries, where the utilisation of high forces amid large stiffness is the prerequisite. Nevertheless, there has been substantial effort put forward in the development of advanced control strategies which finally addressed the issue of the position control. Proportional–integral–derivative control strategy happens to be one among them, which is a versatile and widely renowned approach involved in the position control in this study. Although, it is quite frequently observed that the hydraulic actuation system possesses strong nonlinearities. In this article, two different actuator position control strategies, that is, swash plate control of main pump and speed control strategy of prime mover are compared. In swash plate control strategy, the proportional–integral–derivative controller adjusts the swash plate of main pump through servo mechanism, whereas in the speed control strategy, the proportional–integral–derivative controller adjusts the speed of the electric motor through variable-frequency drive. For this purpose, two MATLAB-Simulink models are developed and validated experimentally. It is found that swash plate control strategy has better dynamic and control performance than the speed control strategy catering same position demand of the linear actuator.


Author(s):  
Kim Seng Chia

<p>Line tracking robots have been widely implemented in various applications. Among various control strategies, a proportional-integral-derivative (PID) algorithm has been widely proposed to optimize the performance of a line tracking robot. However, the motivation of using a PID controller, instead of a proportional (P) or a proportional-integral (PI) controller, in a line tracking task has seldom been discussed. Particularly, the use of a systematic tuning approach e.g. closed loop Ziegler Nichols rule to optimize the parameters of a PID controller has rarely been investigated. Thus, this paper investigates the performance of P, PI, and PID controllers in a line tracking task, and the ability of Ziegler Nichols rule to optimize the parameters of the P, PI, and PID controllers. First, the ultimate gain value, K<sub>u</sub> and ultimate period of oscillation, P<sub>u</sub> were estimated using a proposed approach. Second, the values of K<sub>P</sub>, K<sub>I</sub> and K<sub>D</sub> were estimated using the Ziegler Nichols formulae. The performance of a differential wheeled robot in the line tracking task was evaluated using three different speeds. Results indicate that the Ziegler Nichols rule coupled with the proposed method is able to identify the parameters of the P, PI, and PID controllers systematically in the line tracking task. Findings indicate that the mobile robot coupled with a proportional controller achieved the best performance compared to PI and PID controllers in the line tracking process when the estimated initial parameters were used.</p>


Author(s):  
Ritu Raj ◽  
B. M. Mohan

In this paper, an attempt is made to generalize the analytical structures of Takagi-Sugeno (TS) fuzzy two-input two-output (TITO) proportional-integral (PI)/proportional-derivative (PD) controllers using multiple input fuzzy sets. Two models of fuzzy TITO PI/PD controllers are proposed based on two distinct control strategies. The inputs are fuzzified by multiple fuzzy sets with trapezoidal/triangular membership functions. The generalized rule base consists of nine control rules imbibing the complete control strategy and is closer in spirit to the original TS rule base. Algebraic product (AP) triangular norm, bounded sum (BS) triangular conorm, and center of gravity (CoG) defuzzifier are applied to derive the models. The models of the fuzzy TITO PI/PD controllers with multiple input fuzzy sets are (nonlinear) variable gain/structure controllers. Also, each output of the fuzzy controller is the sum of two nonlinear PI/PD controllers with variable gains. The gain variation and properties of the proposed controllers are studied. Two examples of nonlinear dynamic processes are considered to demonstrate the applicability of the proposed controllers.


Sign in / Sign up

Export Citation Format

Share Document