Accurate 3-D Parameterized Modeling of Complex Milling Cutter with Fir-slots for Rotor-groove Machining

2016 ◽  
Vol 11 (1) ◽  
pp. 1
Author(s):  
Xiang Su
2008 ◽  
Vol 07 (01) ◽  
pp. 65-67
Author(s):  
CHANGPING ZOU ◽  
LI DU ◽  
XIANDE HUANG

A new type of six-bar swaying machine was put forward, which is an ingenious combination of plane multi-bar mechanism and high pressure oil cylinder. Preliminary analysis shows that this machine has many advantages, such as the torque produced by its unit weight, its small size, its light deadweight, etc. Thus it can be applied to situations that need swaying mechanism with low rotational speed and great torque. Firstly, the mechanism composition and working principle of the swaying machine were introduced. Secondly, parameterized modeling of the mechanism was carried out by utilizing software ADAMS. Then kinematic analysis and kinetic analysis were completed by using ADAMS. Finally, key dimensions were adjusted according to kinetic analysis. These tasks are believed to be beneficial to the development of the novel transmission.


2006 ◽  
Vol 304-305 ◽  
pp. 206-209 ◽  
Author(s):  
Gang Liu ◽  
Ming Chen ◽  
Z.G. Hu ◽  
X.F. Zhu ◽  
H. Xu ◽  
...  

PCD tools, especially curve edge PCD compound tools are used widely in machining nonferrous and non-metal materials with high efficiency and precision because of their excellent cutting properties. But high quality grinding of PCD tools is the uppermost obstacle in application because there are great difficulties to profile and sharpen edge in grinding, especially for milling cutter and drill with curve edge. This paper studied technology of wire EDG curve edge PCD compound tools by wire electrical discharge grinding machine with five-axis CNC system. The grinding quality was evaluated by scanning electron microscope (SEM) and roughometer. Three steps processing technique (roughing, finishing and fine finishing) and optimal process parameters of wire EDG PCD tools were recommended after considering synthetically the surface quality, precision and machining efficiency. The results met the requirement of high surface quality, precision and efficiency. This paper also applied successfully the optimal technology to grind a PCD milling cutter with outer and inner blade by electrical discharge grinding machine with five-axis CNC system. By the optimal parameters, the process yielded high precision of ±4.3µm and low roughness of 0.30µm. Experiment results have great practical significance to the high precise and efficient wire EDG of PCD tools.


2018 ◽  
Vol 8 (8) ◽  
pp. 1353
Author(s):  
Tao Chen ◽  
Fei Gao ◽  
Suyan Li ◽  
Xianli Liu

Carbon fiber reinforced plastic (CFRP) is typically hard to process, because it is easy for it to generate processing damage such as burrs, tears, delamination, and so on in the machining process. Consequently, this restricts its wide spread application. This paper conducted a comparative experiment on the cutting performance of the two different-structure milling cutters, with a helical staggered edge and a rhombic edge, in milling carbon fiber composites; analyzed the wear morphologies of the two cutting tools; and thus acquired the effect of the tool structure on the machined surface quality and cutting force. The results indicated that in the whole cutting, the rhombic milling cutter with a segmented cutting edge showed better wear resistance and a more stable machined surface quality. It was not until a large area of coating shedding occurred, along with chip clogging, that the surface quality decreased significantly. At the stage of coating wear, the helical staggered milling cutter with an alternately arranged continuous cutting edge showed better machined surface quality, but when the coating fell off, its machined surface quality began to reveal damage such as groove, tear, and fiber pullout. Meanwhile, burrs occurred at the edge and the cutting force obviously increased. By contrast, for the rhombic milling cutter, both the surface roughness and cutting force increased relatively slowly.


2009 ◽  
Vol 407-408 ◽  
pp. 202-206
Author(s):  
Tian Li ◽  
Wu Yi Chen ◽  
Ru Feng Xu ◽  
Dan Wang

To satisfy the requirement in blisk machining, a barrel-ball milling (BBM) cutter suitable for machining both blade and hub is presented in this paper. The selection of cutter parameter and calculation of cutter location were put forward. The new efficient machining cutter location via the advanced optimization on cutter machining strip width was gained. By the numerical simulation of blisk blade machining, the feasibility of the BBM cutter and cutter location strategy were verified. The result showed that the efficiency of this method was increased to more than three times compared to the machining with a ball cutter.


2008 ◽  
Vol 392-394 ◽  
pp. 793-797
Author(s):  
Bin Jiang ◽  
Min Li Zheng ◽  
Fang Xu

Based on analyses of cutting heat and temperature in high speed milling, to construct a model of critical cutting speed for high speed milling cutter, find out influencing factor of critical cutting speed, and put forward optimization method of high speed milling cutter based on critical cutting speed. The results indicate that chip conducts a majority of cutting heat along with increase of cutting speed, feed speed and the rake of cutter. Cutting heat which workpiece conducts gradually diminishes when heat source accelerates. When cutting performance of cutter satisfies requirements of high speed milling, the proportion of cutting heat which workpiece conducts approaches its maximum as cutting speed comes to critical cutting speed. To optimize high speed face milling cutter for machining aluminum alloy according to critical cutting speed, the cutter takes on better cutting performance when cutting speed is 2040m/min~2350m/min.


2012 ◽  
Vol 226-228 ◽  
pp. 98-101
Author(s):  
Hong Qing Lv ◽  
Wei Xiao Tang ◽  
Qing Hua Song ◽  
Shan Shan Sun

A review of research on the vibration control technology inspiration from the biological vibration damping mechanisms is described. First the important concept and background of the bionic vibration damping technology are briefly introduced. Then the basic theories and its applications in the engineering fields are elaborated from three aspects: vibration damping mechanisms of the creatures own the good ability to withstand the ambient vibrations, mechanical models of biological prototypes and its application progress in the practical occasions.


Sign in / Sign up

Export Citation Format

Share Document