ANN and ANFIS Models for COP Prediction of a Water Purification Process Integrated to a Heat Transformer with Energy Recycling

2012 ◽  
Vol 7 (1) ◽  
Author(s):  
Youness El Hamzaoui ◽  
J.A Hernandez ◽  
Abraham Gonzalez Roman ◽  
José Alfredo Rodríguez Ramírez

The aim of this study is to demonstrate the comparison of an artificial neural network (ANN) and an adaptive neuro fuzzy inference system (ANFIS) for the prediction of the coefficient of performance (COP) for a water purification process integrated in an absorption heat transformer system with energy recycling. ANN and ANFIS models take into account the input and output temperatures for each one of the four components (absorber, generator, evaporator, and condenser), as well as two presures and LiBr+H2O concentrations. Experimental results are performed to verify the results from the ANN and ANFIS approaches. For the network, a feedforward with one hidden layer, a Levenberg-Marquardt learning algorithm, a hyperbolic tangent sigmoid transfer function and a linear transfer function were used. The best fitting training data set was obtained with three neurons in the hidden layer. On the validaton data set, simulations and experimental data test were in good agreement (R2>0.9980). However, the ANFIS model was developed using the same input variables. The statistical values are given in as tables. However, comparaison between two models shows that ANN provides better results than the ANFIS results. Finally this paper shows the appropriateness of ANN and ANFIS for the quantitative modeling with reasonable accuracy.

Entropy ◽  
2021 ◽  
Vol 23 (1) ◽  
pp. 126
Author(s):  
Sharu Theresa Jose ◽  
Osvaldo Simeone

Meta-learning, or “learning to learn”, refers to techniques that infer an inductive bias from data corresponding to multiple related tasks with the goal of improving the sample efficiency for new, previously unobserved, tasks. A key performance measure for meta-learning is the meta-generalization gap, that is, the difference between the average loss measured on the meta-training data and on a new, randomly selected task. This paper presents novel information-theoretic upper bounds on the meta-generalization gap. Two broad classes of meta-learning algorithms are considered that use either separate within-task training and test sets, like model agnostic meta-learning (MAML), or joint within-task training and test sets, like reptile. Extending the existing work for conventional learning, an upper bound on the meta-generalization gap is derived for the former class that depends on the mutual information (MI) between the output of the meta-learning algorithm and its input meta-training data. For the latter, the derived bound includes an additional MI between the output of the per-task learning procedure and corresponding data set to capture within-task uncertainty. Tighter bounds are then developed for the two classes via novel individual task MI (ITMI) bounds. Applications of the derived bounds are finally discussed, including a broad class of noisy iterative algorithms for meta-learning.


Measurement ◽  
2009 ◽  
Vol 42 (3) ◽  
pp. 464-473 ◽  
Author(s):  
R.F. Escobar ◽  
J. Uruchurtu ◽  
D. Juárez ◽  
J. Siqueiros ◽  
J.A. Hernández

2020 ◽  
pp. 609-623
Author(s):  
Arun Kumar Beerala ◽  
Gobinath R. ◽  
Shyamala G. ◽  
Siribommala Manvitha

Water is the most valuable natural resource for all living things and the ecosystem. The quality of groundwater is changed due to change in ecosystem, industrialisation, and urbanisation, etc. In the study, 60 samples were taken and analysed for various physio-chemical parameters. The sampling locations were located using global positioning system (GPS) and were taken for two consecutive years for two different seasons, monsoon (Nov-Dec) and post-monsoon (Jan-Mar). In 2016-2017 and 2017-2018 pH, EC, and TDS were obtained in the field. Hardness and Chloride are determined using titration method. Nitrate and Sulphate were determined using Spectrophotometer. Machine learning techniques were used to train the data set and to predict the unknown values. The dominant elements of groundwater are as follows: Ca2, Mg2 for cation and Cl-, SO42, NO3− for anions. The regression value for the training data set was found to be 0.90596, and for the entire network, it was found to be 0.81729. The best performance was observed as 0.0022605 at epoch 223.


2018 ◽  
Vol 7 (04) ◽  
pp. 871-888 ◽  
Author(s):  
Sophie J. Lee ◽  
Howard Liu ◽  
Michael D. Ward

Improving geolocation accuracy in text data has long been a goal of automated text processing. We depart from the conventional method and introduce a two-stage supervised machine-learning algorithm that evaluates each location mention to be either correct or incorrect. We extract contextual information from texts, i.e., N-gram patterns for location words, mention frequency, and the context of sentences containing location words. We then estimate model parameters using a training data set and use this model to predict whether a location word in the test data set accurately represents the location of an event. We demonstrate these steps by constructing customized geolocation event data at the subnational level using news articles collected from around the world. The results show that the proposed algorithm outperforms existing geocoders even in a case added post hoc to test the generality of the developed algorithm.


2009 ◽  
Vol 5 (1-3) ◽  
pp. 12-18 ◽  
Author(s):  
V.M. Velazquez ◽  
J.A. Hernández ◽  
D. Juárez ◽  
J. Siqueirosa ◽  
S.F. Mussati

2013 ◽  
Vol 706-708 ◽  
pp. 1950-1953
Author(s):  
Wu Kui Zhao ◽  
Cheng Zhang ◽  
Yi Bo Wang

The evaluation of equipment support training is an effective way to improve training efficiency. The main influencing factors of equipment support training are analyzed. Adaptive neural fuzzy inference system (ANFIS) model structure is established and the hybrid-learning algorithm to solve the established model by applying back-propagation and least mean squares procedure is investigated. Then the evaluation model of equipment support training level based on ANFIS is constructed. The training level consistent with the actual training level is achieved by training the proposed model using training data samples, which verifies the correctness and effectiveness of the proposed method. Simulation comparing analysis using the proposed method and BP neutral network is conducted respectively. The superiority of the proposed method is verified by simulation results, which provides an effective method for equipment support training evaluation.


Desalination ◽  
2008 ◽  
Vol 222 (1-3) ◽  
pp. 666-672 ◽  
Author(s):  
R.F. Escobar ◽  
D. Juárez ◽  
J. Siqueiros ◽  
C. Irles ◽  
J.A. Hernández

2015 ◽  
Vol 24 (1) ◽  
pp. 135-143 ◽  
Author(s):  
Omer F. Alcin ◽  
Abdulkadir Sengur ◽  
Jiang Qian ◽  
Melih C. Ince

AbstractExtreme learning machine (ELM) is a recent scheme for single hidden layer feed forward networks (SLFNs). It has attracted much interest in the machine intelligence and pattern recognition fields with numerous real-world applications. The ELM structure has several advantages, such as its adaptability to various problems with a rapid learning rate and low computational cost. However, it has shortcomings in the following aspects. First, it suffers from the irrelevant variables in the input data set. Second, choosing the optimal number of neurons in the hidden layer is not well defined. In case the hidden nodes are greater than the training data, the ELM may encounter the singularity problem, and its solution may become unstable. To overcome these limitations, several methods have been proposed within the regularization framework. In this article, we considered a greedy method for sparse approximation of the output weight vector of the ELM network. More specifically, the orthogonal matching pursuit (OMP) algorithm is embedded to the ELM. This new technique is named OMP-ELM. OMP-ELM has several advantages over regularized ELM methods, such as lower complexity and immunity to the singularity problem. Experimental works on nine commonly used regression problems indicate that the investigated OMP-ELM method confirms these advantages. Moreover, OMP-ELM is compared with the ELM method, the regularized ELM scheme, and artificial neural networks.


Complexity ◽  
2020 ◽  
Vol 2020 ◽  
pp. 1-11
Author(s):  
Jun Zhang ◽  
Da-Yong Luo

Stochastic neural network has the characteristics of good global convergence and fast gradient-based learning ability. It can be applied to multidimensional nonlinear systems, but its generalization ability is poor. In this paper, combined with rule base, through the PCA method, an improved multimodal variable-structure random-vector neural network algorithm (MM-P-VSRVNN) is proposed for coagulant dosing, which is a key production process in water purification process. Ensuring for qualified water, how to control coagulation dosage effectively, obtain valid production cost, and increase more profits is a focus in the water treatment plan. Different with the normal neural network mode, PCA is used to optimize hidden-layer nodes and update the neural network structure at every computation. This method rectifies coagulant dosage effectively while keeping valid coagulation performance. By the way, the MM-P-VSRVNN algorithm can decrease computation time and avoid overfitting learning ability. Finally, the method is proved feasible through the experiment and analyzed by the simulation result.


2012 ◽  
Vol 461 ◽  
pp. 818-821
Author(s):  
Shi Hu Zhang

The problem of real estate prices are the current focus of the community's concern. Support Vector Machine is a new machine learning algorithm, as its excellent performance of the study, and in small samples to identify many ways, and so has its unique advantages, is now used in many areas. Determination of real estate price is a complicated problem due to its non-linearity and the small quantity of training data. In this study, support vector machine (SVM) is proposed to forecast the price of real estate price in China. The experimental results indicate that the SVM method can achieve greater accuracy than grey model, artificial neural network under the circumstance of small training data. It was also found that the predictive ability of the SVM outperformed those of some traditional pattern recognition methods for the data set used here.


Sign in / Sign up

Export Citation Format

Share Document