17 Mesenchymal stem cells and the tumor microenvironment

Author(s):  
Scott A. Bergfeld ◽  
Yves A. DeClerck
Author(s):  
Hariharan Jayaraman ◽  
Nalinkanth V. Ghone ◽  
Ranjith Kumaran R ◽  
Himanshu Dashora

: Mesenchymal stem cells because of its high proliferation, differentiation, regenerative capacity, and ease of availability have been a popular choice in cytotherapy. Mesenchymal Stem Cells (MSCs) have a natural tendency to home in a tumor microenvironment and acts against it, owing to the similarity of the latter to an injured tissue environment. Several studies have confirmed the recruitment of MSCs by tumor through various cytokine signaling that brings about phenotypic changes to cancer cells, thereby promoting migration, invasion, and adhesion of cancer cells. The contrasting results on MSCs as a tool for cancer cytotherapy may be due to the complex cell to cell interaction in the tumor microenvironment, which involves various cell types such as cancer cells, immune cells, endothelial cells, and cancer stem cells. Cell to cell communication can be simple or complex and it is transmitted through various cytokines among multiple cell phenotypes, mechano-elasticity of the extra-cellular matrix surrounding the cancer cells, and hypoxic environments. In this article, the role of the extra-cellular matrix proteins and soluble mediators that acts as communicators between mesenchymal stem cells and cancer cells has been reviewed specifically for breast cancer, as it is the leading member of cancer malignancies. The comprehensive information may be beneficial in finding a new combinatorial cytotherapeutic strategy using MSCs by exploiting the cross-talk between mesenchymal stem cells and cancer cells for treating breast cancer.


2021 ◽  
Vol 22 ◽  
Author(s):  
Soheila Montazersaheb ◽  
Ezzatollah Fathi ◽  
Ayoub Mamandi ◽  
Raheleh Farahzadi ◽  
Hamid Reza Heidari

: Tumors are made up of different types of cancer cells that contribute to tumor heterogeneity. Among these cells, cancer stem cells (CSCs) have a significant role in the onset of cancer and development. Like other stem cells, CSCs are characterized by the capacity for differentiation and self-renewal. A specific population of CSCs is constituted by mesenchymal stem cells (MSCs) that differentiate into mesoderm-specific cells. The pro-or anti-tumorigenic potential of MSCs on the proliferation and development of tumor cells has been reported as contradictory results. Also, tumor progression is specified by the corresponding tumor cells like the tumor microenvironment. The tumor microenvironment consists of a network of reciprocal cell types such as endothelial cells, immune cells, MSCs, and fibroblasts as well as growth factors, chemokines, and cytokines. In this review, recent findings related to the tumor microenvironment and associated cell populations, homing of MSCs to tumor sites, and interaction of MSCs with tumor cells will be discussed.


2020 ◽  
Author(s):  
mohsen Keshavarz ◽  
Mir Saeed Ebrahimzadeh ◽  
Seyed Mohammad Miri ◽  
Hassan Dianat-Moghadam ◽  
Seyedeh Sara Ghorbanhosseini ◽  
...  

Abstract Background: Cervical cancer is the most common human papillomavirus (HPV)-related cancer caused by persistent genital high-risk HPV infection. Cancer immunotherapy has represented great potential as a new promising cancer therapeutic approach. Here, we report Mesenchymal stem cells (MSCs) as a carrier for the delivery of oncolytic Newcastle disease virus (NDV) for the treatment of HPV-associated tumor.Methods: For this purpose, MSCs obtained from the bone marrow of C57BL mice, then cultured and characterized subsequently by the flow cytometry analysis for the presence of cell surface markers. In this study, we sought out to determine the impacts of MSCs loaded with oncolytic NDV on splenic T cell and cytokine immune responses, caspase-3 and -9 expression, and myeloid and myeloid-derived suppressor cells (MDSCs) by histological and immunohistochemical studies in the tumor microenvironment (TME).Results: our findings proved that MSCs possess both migratory capacity and tumor tropism toward transplanted tumor tissue after peritumoral administration. Tumor therapy experiments indicated that oncolytic NDV delivered by MSCs-engineered system significantly reduces tumor growth, which is associated with the enhancement of E7-specific lymphocyte proliferation, CD8+ T cell cytolysis responses, and splenic IFN-γ, IL-4 and IL-12 responses compared with control groups. Moreover, the treatment upregulated the concentration of apoptotic proteins (caspase 3 and 9) and increased infiltration of tumor microenvironment with CD11b+myeloid and Gr1+MDSCs cells.Conclusions: Our data suggest MSCs carrying oncolytic NDV as a potentially effective strategy for cancer immunotherapy through inducing splenic Th1 immune responses and MDSCs expansion in the tumor microenvironment.


2021 ◽  
Vol 9 (1) ◽  
pp. 252-260
Author(s):  
Sara Amorim ◽  
Diana Soares da Costa ◽  
Iva Pashkuleva ◽  
Celso A. Reis ◽  
Rui L. Reis ◽  
...  

A 3D tumor microenvironment model is presented, combining hyaluronic acid (HA) and alginate. The model can be used to mimic the bioactivity of HA in gastric cancer, as well as the crosstalk between cancer cells and mesenchymal stem cells.


The Prostate ◽  
2018 ◽  
Vol 79 (3) ◽  
pp. 320-330 ◽  
Author(s):  
Timothy E. Krueger ◽  
Daniel L. J. Thorek ◽  
Alan K. Meeker ◽  
John T. Isaacs ◽  
W. Nathaniel Brennen

2014 ◽  
Author(s):  
Shrikanta Chattopadhyay ◽  
Cherrie Huang ◽  
Siddhartha Mukherjee ◽  
Rushdia Z. Yusuf ◽  
Vasanthi Viswanathan ◽  
...  

2014 ◽  
Vol 74 (5) ◽  
pp. 1576-1587 ◽  
Author(s):  
Weifang Ling ◽  
Jimin Zhang ◽  
Zengrong Yuan ◽  
Guangwen Ren ◽  
Liying Zhang ◽  
...  

Biomedicines ◽  
2021 ◽  
Vol 9 (5) ◽  
pp. 575
Author(s):  
Jingzhi Zu ◽  
Liwei Tan ◽  
Li Yang ◽  
Qi Wang ◽  
Jing Qin ◽  
...  

Improving the tumor targeting of docetaxel (DTX) would not only be favored for the chemotherapeutic efficacy, but also reduce its side effects. However, the regulation of the tumor microenvironment could further inhibit the growth of tumors. In this study, we introduced a system consisting of hypoxia-engineered bone marrow mesenchymal stem cells (H-bMSCs) and DTX micelles (DTX-M) for breast cancer treatment. First, the stem cell chemotherapy complex system (DTX@H-bMSCs) with tumor-targeting ability was constructed according to the uptake of DTX-M by hypoxia-induced bMSCs (H-bMSCs). DTX micellization improved the uptake efficiency of DTX by H-bMSCs, which equipped DTX@H-bMSCs with satisfactory drug loading and stability. Furthermore, the migration of DTX@H-bMSCs revealed that it could effectively target the tumor site and facilitate the drug transport between cells. Moreover, in vitro and in vivo pharmacodynamics of DTX@H-bMSCs exhibited a superior antitumor effect, which could promote the apoptosis of 4T1 cells and upregulate the expression of inflammatory factors at the tumor site. In brief, DTX@H-bMSCs enhanced the chemotherapeutic effect in breast cancer treatment.


Biomedicines ◽  
2021 ◽  
Vol 9 (11) ◽  
pp. 1572
Author(s):  
Jinok Noh ◽  
Jinyeong Yu ◽  
Wootak Kim ◽  
Aran Park ◽  
Ki-Sook Park

The prostate tumor microenvironment plays important roles in the metastasis and hormone-insensitive re-growth of tumor cells. Bone marrow-derived mesenchymal stem cells (BM-MSCs) are recruited into prostate tumors to facilitate tumor microenvironment formation. However, the specific intrinsic molecules mediating BM-MSCs’ migration to prostate tumors are unknown. BM-MSCs’ migration toward a conditioned medium (CM) of hormone-insensitive (PC3 and DU145) or hormone-sensitive (LNCaP) prostate tumor cells was investigated using a three-dimensional cell migration assay and a transwell migration assay. PC3 and DU145 expressed transforming growth factor-β (TGF-β), but LNCaP did not. Regardless of TGF-β expression, BM-MSCs migrated toward the CM of PC3, DU145, or LNCaP. The CM of PC3 or DU145 expressing TGF-β increased the phosphorylation of Smad2/3 in BM-MSCs. Inactivation of TGF-β signaling in BM-MSCs using TGF-β type 1 receptor (TGFBR1) inhibitors, SB505124, or SB431542 did not allow BM-MSCs to migrate toward the CM. The CM of PC3 or DU145 enhanced N-cadherin expression on BM-MSCs, but the LNCaP CM did not. SB505124, SB431542, and TGFBR1 knockdown prevented an increase in N-cadherin expression. N-cadherin knockdown inhibited the collective migration of BM-MSCs toward the PC3 CM. We identified N-cadherin as a mediator of BM-MSCs’ migration toward hormone-insensitive prostate tumor cells expressing TGF-β and introduced a novel strategy for controlling and re-engineering the prostate tumor microenvironment.


Sign in / Sign up

Export Citation Format

Share Document