4 Energy band gap variations in chalcogenide compound semiconductors: influence of crystal structure, structural disorder, and compositional variations

2021 ◽  
pp. 123-152
Author(s):  
Susan Schorr ◽  
Galina Gurieva
2017 ◽  
Vol 751 ◽  
pp. 379-383 ◽  
Author(s):  
Buppachat Toboonsung

Fe-doped NiO nanoparticles was prepared by the co-precipitation method. The precipitation solution were used the concentration of FeSO4 mixing NiCl2 for 0.5 M. The precipitation process was used a magnetic stirrer of 1100 rpm, a temperature of 30-60 OC for 0.5 h and the dropping a NaOH of 0.5 M in the mixing solution. The precipitate product was dried at the temperature of 120 OC for 9 h and calcined in a furnace at the temperature of 400 OC for 4 h in air atmosphere. The powder product was analyzed a crystal structure by a x-rays diffractometer, calculated an energy band gap by UV-VIS spectrophotometer, measured a magnetic properties by a vibrating sample magnetometer and explained morphology by a scanning electron microscope. It was found that the crystal structure was shown face center cubic. The nanoparticles in the range of 30-100 nm was observed the morphology of the optimum product. However, the coercive, the magnetic moment and the energy band gap was found the optimum at the doping Fe of 8 wt% at the precipitation temperature of 40 OC.


Mathematics ◽  
2020 ◽  
Vol 8 (9) ◽  
pp. 1512
Author(s):  
Changho Seo ◽  
Seongsoo Cho ◽  
Je Huan Koo
Keyword(s):  
Band Gap ◽  

We investigate why normal electrons in superconductors have no resistance. Under the same conditions, the band gap is reduced to zero as well, but normal electrons at superconducting states are condensed into this virtual energy band gap.


Electronics ◽  
2021 ◽  
Vol 10 (9) ◽  
pp. 988
Author(s):  
Chrysa Aivalioti ◽  
Alexandros Papadakis ◽  
Emmanouil Manidakis ◽  
Maria Kayambaki ◽  
Maria Androulidaki ◽  
...  

Nickel oxide (NiO) is a p-type oxide and nitrogen is one of the dopants used for modifying its properties. Until now, nitrogen-doped NiO has shown inferior optical and electrical properties than those of pure NiO. In this work, we present nitrogen-doped NiO (NiO:N) thin films with enhanced properties compared to those of the undoped NiO thin film. The NiO:N films were grown at room temperature by sputtering using a plasma containing 50% Ar and 50% (O2 + N2) gases. The undoped NiO film was oxygen-rich, single-phase cubic NiO, having a transmittance of less than 20%. Upon doping with nitrogen, the films became more transparent (around 65%), had a wide direct band gap (up to 3.67 eV) and showed clear evidence of indirect band gap, 2.50–2.72 eV, depending on %(O2-N2) in plasma. The changes in the properties of the films such as structural disorder, energy band gap, Urbach states and resistivity were correlated with the incorporation of nitrogen in their structure. The optimum NiO:N film was used to form a diode with spin-coated, mesoporous on top of a compact, TiO2 film. The hybrid NiO:N/TiO2 heterojunction was transparent showing good output characteristics, as deduced using both I-V and Cheung’s methods, which were further improved upon thermal treatment. Transparent NiO:N films can be realized for all-oxide flexible optoelectronic devices.


2008 ◽  
Vol 3 ◽  
pp. 97-102 ◽  
Author(s):  
Dinu Patidar ◽  
K.S. Rathore ◽  
N.S. Saxena ◽  
Kananbala Sharma ◽  
T.P. Sharma

The CdS nanoparticles of different sizes are synthesized by a simple chemical method. Here, CdS nanoparticles are grown through the reaction of solution of different concentration of CdCl2 with H2S. X-ray diffraction pattern confirms nano nature of CdS and has been used to determine the size of particle. Optical absorption spectroscopy is used to measure the energy band gap of these nanomaterials by using Tauc relation. Energy band gap ranging between 3.12 eV to 2.47 eV have been obtained for the samples containing the nanoparticles in the range of 2.3 to 6.0 nm size. A correlation between the band gap and size of the nanoparticles is also established.


2020 ◽  
pp. 111059
Author(s):  
B. Thapa ◽  
P.K. Patra ◽  
Sandeep Puri ◽  
K. Neupane ◽  
A. Shankar

2000 ◽  
Vol 214-215 ◽  
pp. 350-354 ◽  
Author(s):  
Kyurhee Shim ◽  
Herschel Rabitz ◽  
Ji-Ho Chang ◽  
Takafumi Yao

Sign in / Sign up

Export Citation Format

Share Document