scholarly journals Determination of Eutectoid Transformation Temperatures in Ductile Cast Iron

2015 ◽  
Vol 15 (4) ◽  
pp. 51-54 ◽  
Author(s):  
A.W. Orłowicz ◽  
A. Trytek ◽  
M. Mróz ◽  
M. Tupaj

Abstract The paper proposes a methodology useful in verification of results of dilatometric tests aimed at determination of temperatures defining the start and the end of eutectoid transformation in the course of ductile cast iron cooling, based on quenching techniques and metallographic examination. For an industrial melt of ductile cast iron, the effect of the rate of cooling after austenitization at temperature 900°C carried out for 30 minutes on temperatures TAr1start and TAr1end was determined. The heating rates applied in the study were the same as the cooling rates and equaled 30, 60, 90, 150, and 300°C/h. It has been found that with increasing cooling rate, values of temperatures TAr1start and TAr1end decrease by several dozen degrees.

2010 ◽  
Vol 457 ◽  
pp. 163-168 ◽  
Author(s):  
Primož Mrvar ◽  
Mitja Petrič ◽  
Jožef Medved

Paper deals with influence of cooling rate and alloying elements on kinetics of eutectoid transformation in spheroidal graphite cast iron (SGI). Transformation of austenite can proceed into ferrite and graphite (FeFeG) and/or in pearlite (Fe  FeFe3C). Examination of eutectoid transformation was made by evaluating the “in-situ” dilatation curves together with metallographic examinations, DTA, and dilatation analyses in solid state. ThermoCalc software was applied for thermodynamic calculations of phase equilibria. Based on numerous quantitative relations, such as relation between fractions of ferrite and pearlite in the as-cast SGI that was determined by analysis of dilatometric curves and taking into account also composition of melt, ferrite/pearlite ratio in the microstructure could be determined in a very short time. Thus the melt composition could be corrected by adding Cu and/or Mn or Si, respectively, using the "in situ" dilatation analyses. Characteristic temperatures of eutectoid transformation have been established from the kinetics of austenite transformation and from temperature dependence of ferrite and/or pearlite growth. Kinetics curves that enable to determine fractions of single microstructure constituents in the microstructure as function of transformation time, mainly used for ferrite and pearlite SGI, can be well determined with physical sigmoidal Boltzmann model.


2021 ◽  
Vol 176 (10) ◽  
Author(s):  
Sharon L. Webb

AbstractThe unknown cooling-rate history of natural silicate melts can be investigated using differential scanning heat capacity measurements together with the limiting fictive temperature analysis calculation. There are a range of processes occurring during cooling and re-heating of natural samples which influence the calculation of the limiting fictive temperature and, therefore, the calculated cooling-rate of the sample. These processes occur at the extremes of slow cooling and fast quenching. The annealing of a sample at a temperature below the glass transition temperature upon cooling results in the subsequent determination of cooling-rates which are up to orders of magnitude too low. In contrast, the internal stresses associated with the faster cooling of obsidian in air result in an added exothermic signal in the heat capacity trace which results in an overestimation of cooling-rate. To calculate cooling-rate of glass using the fictive temperature method, it is necessary to create a calibration curve determined using known cooling- and heating-rates. The calculated unknown cooling-rate of the sample is affected by the magnitude of mismatch between the original cooling-rate and the laboratory heating-rate when using the matched cooling-/heating-rate method to derive a fictive temperature/cooling-rate calibration curve. Cooling-rates slower than the laboratory heating-rate will be overestimated, while cooling-rates faster than the laboratory heating-rate are underestimated. Each of these sources of error in the calculation of cooling-rate of glass materials—annealing, stress release and matched cooling/heating-rate calibration—can affect the calculated cooling-rate by factor of 10 or more.


2019 ◽  
Vol 55 (2) ◽  
pp. 283-293 ◽  
Author(s):  
E. Colin-García ◽  
A. Cruz-Ramírez ◽  
G. Reyes-Castellanos ◽  
J.A. Romero-Serrano ◽  
R.G. Sánchez-Alvarado ◽  
...  

The effect of the casting modulus on the distribution and features of graphite in hypo-eutectic ductile iron unalloyed and alloyed with nickel (0.88 wt %) was studied. The cooling rate of the casting plates of 25.4, 12.7 and 8.5 mm in thickness with a casting modulus of 6.87, 4.46 and 3.31 mm, respectively promotes several microstructural changes, such as cementite precipitation and a noticeable nodule count increment. The nickel addition suppressed the cementite formation and improved the nodule count and nodularity for the three casting modulus evaluated. The nickel addition increased the nodule count in 69, 67 and 128 % for the modulus of 3.31, 4.46 and 6.87 mm, respectively, regarding the unalloyed ductile iron. It was found that the biggest casting modulus produced the biggest nodules with the lowest nodule count for both ductile cast irons. Further to the improvements in the graphite features, the nickel addition allowed to keep almost constant the yield and tensile strength ratio for the different casting modulus.


Sign in / Sign up

Export Citation Format

Share Document