scholarly journals Effect of Austenite Transformation on Abrasive Wear and Corrosion Resistance of Spheroidal Ni-Mn-Cu Cast Iron

2016 ◽  
Vol 16 (3) ◽  
pp. 63-66 ◽  
Author(s):  
D. Medyński ◽  
A. Janus

Abstract Within the presented work, the effect of austenite transformation on abrasive wear as well as on rate and nature of corrosive destruction of spheroidal Ni-Mn-Cu cast iron was determined. Cast iron contained: 3.1÷3.4 %C, 2.1÷2.3 %Si, 2.3÷3.3 %Mn, 2.3÷2.5 %Cu and 4.8÷9.3 %Ni. At a higher degree of austenite transformation in the alloys with nickel equivalent below 16.0%, abrasive wear resistance was significantly higher. Examinations of the corrosion resistance were carried out with the use of gravimetric and potentiodynamic method. It was shown that higher degree of austenite transformation results in significantly higher abrasive wear resistance and slightly higher corrosion rate, as determined by the gravimetric method. However, results of potentiodynamic examinations showed creation of a smaller number of deep pinholes, which is a favourable phenomenon from the viewpoint of corrosion resistance.

Materials ◽  
2019 ◽  
Vol 12 (21) ◽  
pp. 3500 ◽  
Author(s):  
Daniel Medyński ◽  
Bartłomiej Samociuk ◽  
Andrzej Janus ◽  
Jacek Chęcmanowski

Results of a study on influence of Cr, Mo and Al on the microstructure, abrasive wear and corrosion resistance of Ni-Mn-Cu cast iron in the as-cast and heat-treated conditions are presented. Because of the chilling effect of first two elements (tendency to create hard spots), graphitising Al was added to the alloys, with the highest concentration of Cr and Mo. All castings in the as-cast condition showed an austenitic matrix, guaranteeing good machinability. Heat treatment of raw castings, consisting in annealing at 500 °C for 4 h, resulted in partial transformation of austenite. As a result the carbon-supersaturated acicular ferrite, morphologically similar to bainitic ferrite was formed. The degree of this transformation increased with increasing concentrations of Cr and Mo, which successively decreased the thermodynamic stability of austenite. A change of matrix structure made it possible to significantly increase hardness and abrasive-wear resistance of castings. The largest increment of hardness and abrasion resistance was demonstrated by the castings with the highest total concentration of Cr and Mo with an addition of 0.4% Al. Introduction of Cr and Mo also resulted in an increase of corrosion resistance. In the heat-treated specimens, increasing the concentration of Cr and Mo resulted in a successive decrease of the depth of corrosion pits, with an increase in their number at the same time. This is very favourable from the viewpoint of corrosion resistance.


Author(s):  
L.-M. Berger ◽  
P. Vuoristo ◽  
T. Mäntylä ◽  
W. Kunert ◽  
W. Lengauer ◽  
...  

Abstract WC-Co-Cr represents an important composition for hardmetal-like coatings which is appHed when simuhaneous wear and corrosion resistance is required. In this paper five commercially available spray powders obtained by various production techniques (sintered and crushed as well as agglomerated and plasma-densified) of the composition WC-10%Co- 4%Cr have been thoroughly characterized and were sprayed by DCS, HVOF (CDS process) and APS. The microstructures of the coatings were characterized and their wear behaviour was investigated by means of an abrasion wear test. For the best of these powders the wear resistance was nearly equal for the DGS and HVOF coatings. Other powders show significant differences with respect to their processabilities in these spray processes. APS coatings from all powders, obtained with an Ar/H2 plasma showed inferior microstructures and significant lower wear resistance. The spray powder compositions, grain sizes and structures were found to determine the processability of the powders and the microstructure and properties of the coatings. COMPOSITE MATERIALS of the type hard phase - metallic binder with WC and CoCr as constituents are widely used for the preparation of hardmetal-like coatings. The chromium addition to the metallic binder is thought to improve its corrosion resistance in comparison with pure WC-Co. This has led to many applications of WC-CoCr coatings where simultaneous wear and corrosion resistance is required. Despite of its significant practical importance only a limited number of publications is devoted to detailed questions of structure and properties of WC-CoCr coatings (1-3). In some comparative studies such coatings have been investigated together with WC-Co and Cr3C2-NiCr coatings (4-8). However, systematic investigations of spray powder compositions and morphologies as well as investigations of the influence of different thermal spray processes on coating structures and properties which have repeatedly been provided for WC-Co (for example (9, 10)) are missing for WC-CoCr. In this paper a short survey of literature on the phase relationships in the WC-CoCr system and the effect of chromium additions on the properties of sintered parts and thermally sprayed coatings compared to WC-Co is given. In the experimental part a systematic study of the influence of the preparation process on composition and morphology of commercially available WC-10%Co-4%Cr spray powders was provided. These powders have been sprayed by DGS, HVOF and APS and the microstructure and basic properties of the coatings have been studied.


Author(s):  
I. Kretschmer ◽  
P. Heimgartner ◽  
R. Polak ◽  
P.A. Kammer

Abstract Fusible Ni-B-Si alloys with a variety of alloy additions (Cr, Mo, Cu etc.) have been in service for many years as fused coatings with moderate corrosion resistance. Both gas- and water-atomised powders have been used with the spray and fuse and with the plasma transferred arc process to produce coatings. As the severity of corrosive industrial environments has increased, for example in waste burning boilers, existing alloys have not provided the desired service performance. This study was undertaken to develop a new family of alloys with improved corrosion resistance without sacrificing usability, wear resistance or cost effectiveness. A range of compositions was prepared and evaluated for deposition characteristic, microstructure, hardness, wear resistance and corrosion resistance in various media. The resulting alloy has an exceptional combination of wear and corrosion resistance in comparison to conventional alloys, when tested under comparable conditions.


2013 ◽  
Vol 58 (3) ◽  
pp. 973-976 ◽  
Author(s):  
D. Kopyciński ◽  
M. Kawalec ◽  
A. Szczęsny ◽  
R. Gilewski ◽  
S. Piasny

Abstract The resistance of castings to abrasive wear depends on the cast iron abrasive hardness ratio. It has been anticipated that the white cast iron structure will be changed by changing the type of metal matrix and the type of carbides present in this matrix, which will greatly expand the application area of castings under the harsh operating conditions of abrasive wear. Detailed metallographic analysis was carried out to see the structure obtained in selected types of white cast iron, i.e. with additions of chromium and vanadium. The study compares the results of abrasive wear resistance tests performed on the examined types of cast iron.


2017 ◽  
Vol 26 (46) ◽  
Author(s):  
Oscar Fabián Higuera-Cobos ◽  
Jeison Bucurú-Vasco ◽  
Andrés Felipe Loaiza-Patiño ◽  
Mónica Johanna Monsalve-Arias ◽  
Dairo Hernán Mesa-Grajales

This paper studies the influence of variables such as holding temperatures and times during austempering of High Chromium White Cast Iron (HCWCI), with the following chemical composition: Cr 25 %, C 3 %, Si 0.47 %, Mn 0.74 % and Mo 1.02 %. The aim of the austempering was to modify the percentage of retained austenite and its correlation to abrasive wear resistance under different conditions.Microhardness tests, SEM-EDS and XRD were performed to determine mechanical properties, chemical composition, and type of carbides and microstructures present, respectively. The tests complied with the ASTM G-65 standard. Results showed that the best performance against abrasion was achieved for austempering at 450 ºC with holding time of 6 hours.


2011 ◽  
Vol 2 (1) ◽  
pp. 82-91
Author(s):  
L. Szabadi ◽  
G. Kalácska ◽  
L. Pék ◽  
I. Pálinkás

More and more steel constructions are provided with zinc coatings as durable protection against corrosion.Hot-dip galvanizing process is widely used in Europe considering its favourable characteristics. Latelybeside the corrosion resistance demand of hot-dip galvanized coatings as a new requirement is theabrasive wear resistance. The industrial floor boards, agricultural walking grids get heavy abrasion effect.The abrasive wear resistance of zinc coatings with multilayer structure is not tested yet, less knowndomain.


Entropy ◽  
2018 ◽  
Vol 20 (12) ◽  
pp. 915 ◽  
Author(s):  
Kaijin Huang ◽  
Lin Chen ◽  
Xin Lin ◽  
Haisong Huang ◽  
Shihao Tang ◽  
...  

In order to improve the wear and corrosion resistance of an AZ91D magnesium alloy substrate, an Al0.5CoCrCuFeNi high-entropy alloy coating was successfully prepared on an AZ91D magnesium alloy surface by laser cladding using mixed elemental powders. Optical microscopy (OM), scanning electron microscopy (SEM), and X-ray diffraction were used to characterize the microstructure of the coating. The wear resistance and corrosion resistance of the coating were evaluated by dry sliding wear and potentiodynamic polarization curve test methods, respectively. The results show that the coating was composed of a simple FCC solid solution phase with a microhardness about 3.7 times higher than that of the AZ91D matrix and even higher than that of the same high-entropy alloy prepared by an arc melting method. The coating had better wear resistance than the AZ91D matrix, and the wear rate was about 2.5 times lower than that of the AZ91D matrix. Moreover, the main wear mechanisms of the coating and the AZ91D matrix were different. The former was abrasive wear and the latter was adhesive wear. The corrosion resistance of the coating was also better than that of the AZ91D matrix because the corrosion potential of the former was more positive and the corrosion current was smaller.


2016 ◽  
Vol 853 ◽  
pp. 441-445
Author(s):  
Cheng Zhou Chen ◽  
Wei Ze Wang ◽  
Kai Di Cheng

The vessel containing sulfur particles has been found failing due to the effect of corrosion and erosion by the sulfur particles. Several coatings, including zinc-aluminum coating, wear-resistance painting and two kinds of polymer, have been provided to resist the negative influence of sulfur in the present study. The wear and corrosion resistance of the selected coatings has been measured to study the performance difference. Impact test has also been done to investigate the bonding condition of coatings under the impact or bending load. The microstructure of coatings before and after wear test is observed by the Optical Microscope (OM) and Scanning Electron Microscope (SEM). The experiment results reveal that one of the polymer coatings shows the best performance in the corrosion resistance, another polymer coating’s wear resistance is better than others. The coatings are bonded well with the substrate except the zinc-aluminum coating. The performance of painting is ordinary in this investigation.


Sign in / Sign up

Export Citation Format

Share Document