scholarly journals Impact of the Allowed Compositional Range of Additively Manufactured 316L Stainless Steel on Processability and Material Properties

Materials ◽  
2021 ◽  
Vol 14 (15) ◽  
pp. 4074
Author(s):  
Felix Großwendt ◽  
Louis Becker ◽  
Arne Röttger ◽  
Abootorab Baqerzadeh Chehreh ◽  
Anna Luise Strauch ◽  
...  

This work aims to show the impact of the allowed chemical composition range of AISI 316L stainless steel on its processability in additive manufacturing and on the resulting part properties. ASTM A276 allows the chromium and nickel contents in 316L stainless steel to be set between 16 and 18 mass%, respectively, 10 and 14 mass%. Nevertheless, the allowed compositional range impacts the microstructure formation in additive manufacturing and thus the properties of the manufactured components. Therefore, this influence is analyzed using three different starting powders. Two starting powders are laboratory alloys, one containing the maximum allowed chromium content and the other one containing the maximum nickel content. The third material is a commercial powder with the chemical composition set in the middle ground of the allowed compositional range. The materials were processed by laser-based powder bed fusion (PBF-LB/M). The powder characteristics, the microstructure and defect formation, the corrosion resistance, and the mechanical properties were investigated as a function of the chemical composition of the powders used. As a main result, solid-state cracking could be observed in samples additively manufactured from the starting powder containing the maximum nickel content. This is related to a fully austenitic solidification, which occurs because of the low chromium to nickel equivalent ratio. These cracks reduce the corrosion resistance as well as the elongation at fracture of the additively manufactured material that possesses a low chromium to nickel equivalent ratio of 1.0. A limitation of the nickel equivalent of the 316L type steel is suggested for PBF-LB/M production. Based on the knowledge obtained, a more detailed specification of the chemical composition of the type 316L stainless steel is recommended so that this steel can be PBF-LB/M processed to defect-free components with the desired mechanical and chemical properties.

Author(s):  
S. Kuroda ◽  
T. Fukushima ◽  
T. Kodama ◽  
M. Sasaki

Abstract 316L stainless steel and Hastelloy C alloy powders were sprayed by an HVOF apparatus onto mild steel substrates. The microstructure, pore size distribution, composition and corrosion resistance of thus obtained coatings were evaluated experimentally. Corrosion resistance in sea-water was examined by monitoring the impedance and corrosion potential of samples immersed in artificial sea-water at 300 K over a period of more than 3 months and also by polarization measurement. It was found that the stainless coatings composed mainly of plastically deformed particles and some splats which were molten at the impact. By increasing the combustion pressure, the porosity as measured by mercury porosimeter could be reduced to below 1%. In comparison, Hastelloy C deposits sprayed under the standard condition were so dense that its porosity could not be measured by the porosimeter. The polarization curve and the results of impedance monitoring both exemplified that the Hastelloy C coatings possess much superior corrosion resistance to the stainless coatings in sea-water, which was attributed to the higher density and better adhesion of the Ni-base alloy coatings.


2021 ◽  
Vol 6 (1) ◽  
pp. 13
Author(s):  
Tomer Ron ◽  
Avi Leon ◽  
Amnon Shirizly ◽  
Eli Aghion

Traditional additive manufacturing (AM) technologies tend to focus on powder bed fusion (PBF) methods, such as SLM (selective laser melting) and EBM (electron beam melting), that are attractive for the rapid production of complex components. However, their inherent drawbacks include the high cost of powders, high energy consumption and size limitation. Hence, more affordable and flexible direct energy deposition processes, such as wire arc additive manufacturing (WAAM), are gaining increased interest. This study aims to evaluate the corrosion behavior, including the stress corrosion resistance of 316L stainless steel, produced by the WAAM process. Experimental samples in the form of cylindrical rods were produced by WAAM process using 316L stainless steel wires and compared with their counterpart AISI 316L alloy. The corrosion resistance was evaluated using potentiodynamic polarization, impedance spectroscopy and slow strain rate testing (SSRT). Despite the differences between the microstructures of printed WAAM 316L alloy and its counterpart AISI 316L, the corrosion performance of both alloys in 3.5% NaCl solution was quite similar.


2019 ◽  
Vol 25 (3) ◽  
pp. 566-580 ◽  
Author(s):  
Edyta Lyczkowska-Widlak ◽  
Pawel Lochynski ◽  
Ginter Nawrat ◽  
Edward Chlebus

Purpose This paper aims to present the way of modifying surfaces of 316L stainless steel elements that were manufactured in the selected laser melting (SLM) technology and then subjected to mechanical and electrolytic processing (electropolishing [EP]). The surface of the as-generated and commercial produced parts was modified by grinding and EP, and the results were compared. The authors also present an example of the application of EP for the final processing of a sample technological model – an initial prototype of a 316L steel implant manufactured in the SLM technology. Design/methodology/approach The analyzed properties included surface topography, roughness, resistance to corrosion, microhardness and the chemical composition of the surface before and after EP. The roughness described with the Ra, Rt and Rz was determined before and after EP of samples manufactured from 316L steel with use of traditional methods and additive technologies. Findings EP provides us with the opportunity to process elements with a complex structure, which would not be possible with use of other methods (such as milling or grinding). Depending on the expected final surface of elements after the SLM process, it is possible to reduce the surface roughness with the use of EP (for t = 20 min, Ra = 3.53 ± 0.37 µm and for t = 40 min, Ra = 3.23 ± 0.22 µm) or mechanical processing and EP (for t = 4 min, Ra = 0.13 ± 0.02 µm). The application of the EP method to elements made from 316L steel, in a bath consisting of sulfuric acid (VI), H2SO4 (35 Vol.%), phosphoric acid (V), H3PO4 (60.5 Vol.%) and triethanolamine 99 per cent (4.5 Vol.%), allows us to improve the surface smoothness and to obtain a value of the Ra parameter ranging from 0.11 to 0.15 µm. The application of a current density of 20 A/dm2 and a bath temperature of 55ºC results in an adequate smoothing of the surface (Ra < 0.16 µm) for both cold rolled and SLM elements after grinding. The application of EP, to both cold rolled elements and those after SLM, considerably improves the resistance to corrosion. The results of potentiodynamic corrosion resistance tests (jkor, EKA and Vp) of the 316L stainless steel samples demonstrate that the values of Vp for elements subjected to EP (commercial material: 1.3·10-4 mm/year, SLM material: 3.5·10-4 mm/year) are lower than for samples that were only ground (commercial material: 4.0·10-4 mm/year, SLM material: 9.6·10-4 mm/year). The microhardness was found to be significantly higher in elements manufactured using SLM technology than in those cold rolled and ground. The ground 316L steel samples were characterized by a microhardness of 318 HV (cold rolled) and 411 HV (SLM material), whereas the microhardness of samples subjected to EP was 230 HV (commercial material) and 375 HV (SLM material). Originality/value The 316L samples were built by SLM method. The surface of the SLM samples was modified by EP. Surface morphological changes after EP were studied using optical methods. Potentiodynamic tests enabled to notice changes in the corrosion resistance of 316L. Microhardness results after electropolished 316L stainless steel were shown. The chemical composition of 316L surface samples was presented. The smoothening of the surface amounted to Ra = 0.16 µm.


Alloy Digest ◽  
1995 ◽  
Vol 44 (6) ◽  

Abstract BioDur 316LS stainless steel is a modified version of Type 316L stainless steel to improve corrosion resistance for surgical implant applications. The alloy is vacuum arc remelted. This datasheet provides information on composition, physical properties, hardness, and tensile properties. It also includes information on corrosion resistance as well as forming, heat treating, machining, and joining. Filing Code: SS-596. Producer or source: Carpenter.


Alloy Digest ◽  
1982 ◽  
Vol 31 (6) ◽  

Abstract Type HN is an iron-chromium-nickel alloy containing sufficient chromium for good high-temperature corrosion resistance and with nickel content in excess of the chromium. This alloy has properties somewhat similar to the more widely used ACI Type HT alloy but with better ductility. Type HN is used for highly stressed components in the 1800-2000 F temperature range. It is used in the aircraft, automotive, petroleum, petrochemical and power industries for a wide range of components and parts. This datasheet provides information on composition, physical properties, hardness, elasticity, and tensile properties as well as creep. It also includes information on high temperature performance and corrosion resistance as well as casting, heat treating, machining, and joining. Filing Code: SS-410. Producer or source: Various stainless steel casting companies.


Alloy Digest ◽  
2015 ◽  
Vol 64 (7) ◽  

Abstract EnduraMet 316LN stainless is a nitrogen strengthened version of Type 316L stainless steel. This datasheet provides information on composition, physical properties, and tensile properties as well as fracture toughness. It also includes information on corrosion resistance as well as forming, heat treating, machining, and joining. Filing Code: SS-1219. Producer or source: Carpenter Technology Corporation.


Sign in / Sign up

Export Citation Format

Share Document