scholarly journals Phytoremediation potential of wild plants growing on soil contaminated with heavy metals

2016 ◽  
Vol 67 (3) ◽  
pp. 229-239 ◽  
Author(s):  
Vladica Čudić ◽  
Dragoslava Stojiljković ◽  
Aleksandar Jovović

Abstract Phytoremediation is an emerging technology that employs higher plants to cleanup contaminated environments, including metal-polluted soils. Because it produces a biomass rich in extracted toxic metals, further treatment of this biomass is necessary. The aim of our study was to assess the five-year potential of the following native wild plants to produce biomass and remove heavy metals from a polluted site: poplar (Populus ssp.), ailanthus (Ailanthus glandulosa L.), false acacia (Robinia pseudoacacia L.), ragweed (Artemisia artemisiifolia L.), and mullein (Verbascum thapsus L). Average soil contamination with Pb, Cd, Zn, Cu, Ni, Cr, and As in the root zone was 22,948.6 mg kg-1, 865.4 mg kg-1, 85,301.7 mg kg-1, 3,193.3 mg kg-1, 50.7 mg kg-1, 41.7 mg kg-1,and 617.9 mg kg-1, respectively. We measured moisture and ash content, concentrations of Pb, Cd, Zn, Cu, Ni, Cr, and As in the above-ground parts of the plants and in ash produced by combustion of the plants, plus gross calorific values. The plants’ phytoextraction and phytostabilisation potential was evaluated based on their bioconcentration factor (BCF) and translocation factor (TF). Mullein was identified as a hyperaccumulator for Cd. It also showed a higher gross calorific value (19,735 kJ kg-1) than ragweed (16,469 kJ kg-1).The results of this study suggest that mullein has a great potential for phytoextraction and for biomass generation, and that ragweed could be an effective tool of phytostabilisation.

2020 ◽  
Vol 21 (5) ◽  
Author(s):  
Nuril Hidayati ◽  
Dwi Setyo Rini

Abstract. Hidayati N, Rini DS. 2020. Assessment of plants as lead and cadmium accumulators for phytoremediation of contaminated rice field. Biodiversitas 21: 1928-1934. Heavy metals contamination in agricultural land becoming a serious problem since this causes declining in agriculture production and quality and thus food safety. Meanwhile, conventional efforts for remediation of the contaminated agricultural lands have not been widely implemented due to high-cost constraints. A low-cost technology that can be applied in contaminated sites is phytoremediation. This technique is based on the fact that plants have the ability to extract and accumulate heavy metals. This research aimed to study the potentials of some plant species as accumulators for phytoremediation in rice fields contaminated by heavy metals of lead (Pb) and cadmium (Cd). Six selected accumulator plant species, namely Colocasia sp., Ipomoea fistulosa Mart. ex Choisy, Eichhornia crassipes (Mart.) Solms, Hymenachne amplexicaulis (Rudge) Nees), Saccharum spontaneum L., and Acorus calamus L., were tested in in-situ field to identify the performance of the plants as accumulators for Pb and Cd. Parameters observed were plant growth and biomass production, and the accumulation of Pb and Cd in plants which is formulated as: bioconcentration factor (BCF) to indicate concentration ratio of metal in plant to soil, and translocation factor (TF) to indicate metal transportation ratio of shoot to root. The results showed that plants with the highest growth rate under contaminated conditions were E. crassipes, A. calamus, and H. amplexicaulis. The highest value of BCF for Pb accumulation was recorded in the shoot of H. amplexicaulis and E. crassipes and in the root of H. amplexicaulis and A. calamus, whereas the highest value of TF for Pb was observed in E. crassipes, S. spontaneum, and H. amplexicaulis. Meanwhile, the highest value of BCF for Cd in the shoot and in the root was observed in Colocasia sp and H. amplexicaulis whereas the highest value of TF for Cd was identified in A calamus and Colocasia sp. With regards to the performance of plant growth, biomass production, and accumulation of Pb and Cd, it is suggested that three plant species, namely E. crassipes, A. calamus, and H. amplexicaulis are considered as potential Pb and Cd accumulators for phytoremediation of contaminated rice fields. Our findings suggest that some plants can produce high biomass and absorb high contaminants while other plants cannot, implying that plants respond differently to different environmental conditions. Therefore continuous research is required to obtain the best plant species for phytoremediation.


2020 ◽  
Vol 111 ◽  
pp. 73-82
Author(s):  
Adrianna Balicka ◽  
Jan Szadkowski

Analysis of adsorption of heavy metals from water solutions by wood of selected domestic species using X-Ray Fluorescence (XRF).The aim of this study was to analyze the absorption of three specific heavy metals from model water solution by wood species from domestic Polish forests. This paper focuses on XRF method to determine metal content in samples. European aspen (Populus tremula L.) and Black locust (Robinia pseudoacacia L.) have been chosen. Firstly, shavings were prepared and soaked with standard solutions of lead (II) nitrate, cadmium nitrate and mercury (II) chloride for 7 days. Then, the material was dried and reduced to ashes using muffle furnace. Finally, content of absorbed metal was marked (XRF) and analyzed with a view to initial contents of metal ions in standard solutions. It was established, that the higher the concentration of mercury in standard solution is, the higher impulse counts is obtained for European aspen. This reversal of the dependence is noticeable for second analyzed species.


2021 ◽  
Author(s):  
Natalia Chernikova ◽  
Victor Chaplygin ◽  
Dina Nevidomskaya ◽  
Karen Ghazaryan ◽  
Saglara Mandzhieva ◽  
...  

<p>The impact of inorganic pollutants in the zone of industrial wastewater settling tanks (South of Russia) was studied. The levels of Mn, Cr, Ni, Cu, Zn, Pb, Cd were determined for Verbascum thapsus L., which are part of the mesophilic succession of wild plants in the studied technogenically polluted territory. V. thapsus L. has been described as a species with great phenotypic plasticity and the capacity for ecotypic differentiation. The bioavailability of heavy metals (HM) for V. thapsus L. from transformed soils has been established. Anatomical and morphological features in the tissues of the plants affected by heavy metals were analyzed using light-optical and electron-microscopic methods. Contamination of the soil cover with Mn, Cr, Ni, Cu, Zn, Pb and Cd has been established with maximum content of Zn. The excess of the maximum permissible levels of pollution with Zn, Pb, Cr and Cd regulated in the Russian Federation was by 1.2, 16, 36 and 246 times higher, respectively analyzing V. thapsus L. The lower level of heavy metal content in the inflorescences in comparison with the root system, stems and leaves indicates the resistance of generative organs to technogenic pollution. In the root and leaves of V. thapsus L. the anatomical and ultrastructural observation was carried out using light-optical and transmission electron microscopy. Changes in the ultrastructure of plants under the influence of anthropogenic impact have been revealed. The most significant changes of the ultrastructure of the polluted plants were found in the cell organelles of leaves (mitochondria, plastids, peroxisomes, etc.) including the spatial transformation of the thylakoid system of plastids during the metal accumulation by plants. The study of the plant tissues role in the elements translocation and accumulation is necessary for understanding the mechanism of hyperaccumulation of HMs by plants.</p><p>The research was financially supported by the RFBR, projects no. 18-29-25071 and 20-55-05014.</p>


2018 ◽  
Vol 28 (4) ◽  
pp. 1295-1298
Author(s):  
Tijana Micić ◽  
Damjan Stanojević ◽  
Petronija Jevtić

A large amount of heavy metals leads to environmental pollution. Heavy metals are part of the land or may arise as a result of human products. Affecting the normal growth and development of plant systems and only to a certain limit concentrations of metals. Increasing these suitable and permitted a value to metals in the soil leads to changes in the composition and appearance of the environment in a negative direction. To eliminate or reduce elevated concentrations of heavy metals and their adverse effects on the environment, many researchers focus their attention on finding species that can act as scavengers soil and phytoremediations. There are a large number of plant species that are capable of survival on such surfaces, whether it comes to wild species or species that are on the site with the aim planted. The best known and the most common fitoremedijatori by woody species are Acacia (Robinia pseudoacacia L.) and its most closely related to indigo ( Amorpha fruticosa L.). Its advanced adaptation and the possibility of survival in the soil rich with heavy metals, are plant species that are used in order to protect the environment from the adverse effects of heavy metals. These species have developed ability to adapt, and thereby can perform the accumulation of heavy metals from the soil. They absorb these metals or through the root system, through the tree to the leaves and flowers or leaves through the metal while returning the return direction. In this way, that is, the accumulation of metals that are present in concentrations higher than allowed for stay vegetation, stored and purified by environmental influences damaging of elements which are present in the air and in the soil.


2016 ◽  
Vol 20 (2) ◽  
pp. 117-124
Author(s):  
Artur Kraszkiewicz

AbstractThe objective of the paper was to assess the usefulness of bark of black locust trunks as an energy source based on chemical and energy properties. Material for research was collected from five forest stands of black locust (Robinia pseudoacacia L.). After determination of the bark mass, its participation in the mass of trees, the content of moisture in bark, density, calorific value, ash, content of C, H, N, S, K and P were established. In comparison to wood, bark has worse chemical properties on account of a high content of sulphur and nitrogen. In the conditions of research, black locust bark had an average density of approx. 400 kg·m−3 which is comparable to the willow and poplar wood. Average calorific value of black locust bark was by 10% higher than the average value of this parameter for bark wood.


Plants ◽  
2020 ◽  
Vol 9 (9) ◽  
pp. 1057
Author(s):  
Ehab Azab ◽  
Ahmad K. Hegazy

Heavy metal-contaminated soil constitutes many environmental concerns. The toxic nature of heavy metals poses serious threats to human health and the ecosystem. Decontamination of the polluted soil by phytoremediation is of fundamental importance. Vegetation is an appealing and cost-effective green technology for the large-scale phytoremediation of polluted soils. In this paper, a greenhouse experiment was carried out to test the potential of Rhazya stricta as a heavy metal phytoremediator in polluted soil. Plants were grown for three months in pots filled with soils treated with the heavy metals Cd, Pb, Cu, and Zn at rates of 10, 50, and 100 mg/kg. The bioaccumulation factor (BCF) and translocation factor (TF) were calculated to detect the ability of R. stricta to accumulate and transfer heavy metals from soil to plant organs. The results showed that under increasing levels of soil pollution, the bioconcentration of Cd and Zn heavy metals showed the highest values in plant roots followed by leaves, whereas in the case of Pb and Cu, roots showed the highest values followed by stems. Heavy metals accumulation was higher in roots than in stems and leaves. The BCF of Zn reached the highest values in roots and stems for 10 mg/kg soil treatment, followed by the BCFs of Cd, Cu, and Pb. The TF for the different heavy metal pollutants’ concentrations was less than unity, suggesting that the plants remediate pollutants by phytostabilization. The TF values ranged from higher to lower were in the order Zn > Cu > Cd > Pb. The rapid growth of R. stricta and its tolerance of heavy metals, as well as its ability to absorb and accumulate metals within the plant, recommends its use in the phytoremediation of slightly polluted soils in arid lands by limiting the heavy metals transport.


Pneumologie ◽  
2004 ◽  
Vol 58 (11) ◽  
Author(s):  
S Kespohl ◽  
R Merget ◽  
M Gellert ◽  
T Brüning ◽  
M Raulf-Heimsoth

2020 ◽  
Vol 53 (1) ◽  
Author(s):  
Zafar Iqbal Khan ◽  
Ilker Ugulu ◽  
Asma Zafar ◽  
Naunain Mehmood ◽  
Humayun Bashir ◽  
...  

Author(s):  
V.V. Tanyukevich ◽  
◽  
S.V. Tyurin ◽  
D.V. Khmeleva ◽  
A.A. Kvasha ◽  
...  

Works on protective afforestation are carried out in order to protect agricultural land from degradation processes, as well as to improve the microclimate of land. The research purpose is to study the bioproductivity and environmental role of Robinia pseudoacacia L. forest shelterbelts in the conditions of the Kuban lowland. The approved and generally accepted methods of forest valuation, forest land reclamation, botany, and mathematical statistics were applied. Plantings were created according to the standard technology for the steppe zone of the Russian Federation. The area of forest shelterbelts is 62.4 ths ha, including 5 % of the young growth (I state class), 80 % of middle-aged forest plantings (II state class), 10 % of maturing plantings (II state class), 5 % of mature and overmature plantings (III state class). Living ground cover is formed by the following species: Koeleria pyramidata L., Poa pratensis L., Festuca pratensis H., Elytrígia repens L., Dactylis glomerata L., and Phlum pratense L. Aboveground phytomass is 100–300 g/m2; height is 25–32 cm. Plantings are characterized by the quality classes: young growth – I and II; middle-aged and maturing – III; mature and overmature – IV. At the age of natural maturity (70 years), the Robinia trunk reaches the average height of 15.1 m with the average diameter of 22.1 cm. The total stock of wood reaches 18, (ths m3), including (ths m3): young growth – 68 (ths m3); middleaged plantings – 14,871 (ths m3); maturing plantings – 2,187 (ths m3); mature and overmature plantings – 1,314 (ths m3). Aboveground phytomass in young growth is 20.2 t/ha; in mature and overmature plantings it is 391.2 t/ha. In the region it is estimated at 17,070 ths t, including (ths t): young growth – 64; middle-aged plantings – 13,753; maturing plantings – 2,032; mature and overmature plantings – 1,221. The share of stem mass reaches 84.5–80.8 %; woody greenery – 4.2–1.5 %; branches – 11.3–17.7 %. Recalculation coefficients of the stock into aboveground phytomass are the following for: young growth – 0.936; mature and overmature forest shelterbelts – 0.929. Phytosaturation of forest shelterbelts varies within 0.314–2.474 kg/m3. Forest shelterbelts have accumulated 8,534 ths t of carbon, which is estimated at 145.1 mln dollars. The sphere of application of the research results is the Krasnodar Krai forestry, which is recommended to create an additional 60 ths ha of forest shelterbelts, which will provide a normative protective forest cover of arable land of 5 % and annual carbon sequestration up to 3.4 t/ha.


Sign in / Sign up

Export Citation Format

Share Document