scholarly journals The Influence of Strontium on the Microstructure of Cast Magnesium Alloys Containing Aluminum and Calcium

2015 ◽  
Vol 60 (1) ◽  
pp. 167-170 ◽  
Author(s):  
T. Rzychoń ◽  
B. Dybowski ◽  
A. Kiełbus

Abstract The structure of Mg-9Al-2Ca-xSr alloys is composed of a-Mg grains and the Al2Ca and Al4 Sr phases in the interdendritic areas. These phases are formed as a result of eutectic reactions. Globular particles of the Al8Mn5 phase are observed within the interior of the grains. The addition of strontium to Mg-9Al-2Ca-0.4Mn alloys causes the formation of the Al4Sr phase and increase of its volume fraction with increasing strontium levels. Moreover, increase of the strontium amount causes a decrease of aluminum content in the a-Mg solid solution.

2014 ◽  
Vol 607 ◽  
pp. 37-42
Author(s):  
Bartlomiej Dybowski ◽  
Tomasz Rzychoń ◽  
Bartosz Chmiela

The influence of strontium addition on the microstructure of a Mg-9Al-2Ca alloy was investigated. The microstructure of Mg-9Al-2Ca-xSr alloys consists of α-Mg, (Mg,Al)2Ca with C15 structure, Al4Sr and AlxMny phases. The addition of strontium decreases the grain size of the α-Mg phase and decreases the aluminum content dissolved in the α-Mg solid solution. Moreover, the volume fraction of the Al4Sr phase increases with increasing strontium content. Strontium does not influence on the volume fraction of (Mg,Al)2Ca phase.


2009 ◽  
Vol 610-613 ◽  
pp. 826-830
Author(s):  
Tian Mo Liu ◽  
Wei Hui Hu ◽  
Qing Liu

The microstructures and mechanical properties of cold upsetting magnesium alloys were investigated upon anneal under different conditions. The results show that a large amount of twins were observed in the original grains of cold upsetting AZ31 magnesium alloys. The twins disappeared gradually and recrystal grains formed after anneal. The volume fraction of the recrystal grains increases as the strain of samples rises. Recrystal grain size grows large with the elevated annealing temperature. Recrystal grain size reduces at first and then grows as the annealing time is prolonged. In addition, compared with as-cast magnesium alloys, the yield strength of cold upsetting samples increase apparently due to grain refinement after anneals.


2007 ◽  
Vol 561-565 ◽  
pp. 163-166
Author(s):  
Yoshihiro Terada ◽  
Tatsuo Sato

Creep rupture tests were performed for a die-cast Mg-Al-Ca alloy AX52 (X representing calcium) at 29 kinds of creep conditions in the temperature range between 423 and 498 K. The creep curve for the alloy is characterized by a minimum in the creep rate followed by an accelerating stage. The minimum creep rate (ε& m) and the creep rupture life (trup) follow the phenomenological Monkman-Grant relationship; trup = C0 /ε& m m. It is found for the AX52 die-cast alloy that the exponent m is unity and the constant C0 is 2.0 x 10-2, independent of creep testing temperature. The values of m and C0 are compared with those for another die-cast magnesium alloys. The value m=1 is generally detected for die-cast magnesium alloys. On the contrary, the value of C0 sensitively depends on alloy composition, which is reduced with increasing the concentration of alloying elements such as Al, Zn and Ca.


Materials ◽  
2018 ◽  
Vol 11 (9) ◽  
pp. 1700 ◽  
Author(s):  
Xi-Shu Wang ◽  
Chang-Hao Tan ◽  
Juan Ma ◽  
Xiao-Dong Zhu ◽  
Qing-Yuan Wang

The low cycle fatigue tests on the crack initiation and propagation of cast magnesium alloys with two small holes were carried out by using in-situ scanning electron microscope (SEM) observation technology. The fatigue crack propagation behaviors and fatigue life, which are affected by two small artificial through holes, including the distances between two holes and their locations, were discussed in detail based on the experimental results and the finite element analysis (FEA). The results indicated that the fatigue multi-cracks occurred chiefly at the edges of two holes and the main crack propagation was along the weak dendrite boundary with the plastic deformation vestiges on the surface of α-Mg phase of cast AM50 and AM60B alloys. The fatigue cracking characteristics of cast AZ91 alloy depended mainly on the brittle properties of β-Mg17Al12 phase, in which the multi-cracks occurred still at the edges of two holes and boundaries of β-Mg17Al12 phase. The fatigue crack initiation position of cast magnesium alloys depends strongly on the radius of curvature of through hole or stress concentration factor at the closed edges of two through holes. In addition, the fatigue multi-cracks were amalgamated for the samples with titled 45° of two small holes of cast Mg-Al alloys when the hole distance is less than 4D (D is the diameter of the small hole).


2012 ◽  
Vol 191 ◽  
pp. 145-150 ◽  
Author(s):  
Michał Stopyra ◽  
Robert Jarosz ◽  
Andrzej Kiełbus

The paper presents analysis of section thickness’ influence on microstructure of Elektron 21 and QE22 magnesium alloys in the form of a stepped casting test. Solid solution grain size and volume fraction of eutectic areas were measured using light microscope and sterological methods. The results showed the significant increase of grain size caused by wall thickness and its slight decrease connected with the distance beetwen analysed section and the gating system. This relationship was confirmed using statistical methods. QE22 alloy demonstrated finer grain structure than Elektron 21 alloy as well as lesser susceptibility of grain size to solidification conditions


Sign in / Sign up

Export Citation Format

Share Document