scholarly journals Cellular Automaton Simulation For Volume Changes Of Solidifying Nodular Cast Iron

2015 ◽  
Vol 60 (3) ◽  
pp. 2379-2384 ◽  
Author(s):  
A. Burbelko ◽  
D. Gurgul ◽  
E. Guzik ◽  
W. Kapturkiewicz

AbstractVolume changes of the binary Fe-C alloy with nodular graphite were forecast by means of the Cellular Automaton Finite Differences (CA-FD) model of solidification. Simulations were performed in 2D space for differing carbon content. Dependences of phase density on temperature were considered in the computations; additionally density of the liquid phase and austenite were deemed as a function of carbon concentration. Changes of the specific volume were forecast on the base of the phase volume fractions and changes of phase density. Density of modeled material was calculated as weighted average of densities of each phase.

1984 ◽  
Vol 34 ◽  
Author(s):  
R. Hummer

ABSTRACTThis study deals with the solidification behaviour of cast iron with nodular graphite. By measurement of the “apparent shrinkage” the real feeding requirement can be determined under operating conditions. By means of cooling curves and measurements of dilatation the mode of solidification is established. The results are in accordance with today's knowledge of the morphology of crystallisation and offer an operating hypothesis for feeding technique in practice.


2010 ◽  
Vol 152-153 ◽  
pp. 259-262
Author(s):  
Ke Gao Liu ◽  
Ai Min Xu ◽  
Dong Xiang ◽  
Bin Xu

The mixed structures of bainite matrix, austenite and nodular graphite were obtained in nodular cast iron treated by controlled cooling and austempering in electric oven instead of nitrate salt bath. The relations between bainitic morphology and mechanical properties were investigated. Experimental results show that, the nodular cast iron treated by controlled cooling in water bath and austempering has microstructures of upper bainite and austenite, the mechanical properties fluctuate greatly due to its relatively narrow temperature region in processing. The consistency of mechanical properties of lower bainite nodular cast iron is superior to upper bainite nodular cast iron. The comprehensive mechanical properties of lower bainite nodular cast iron are improved by tempering. However, the brittleness increases greatly when martensite appears in mixed structures, while good mechanical properties can still be obtained by tempering at elevated temperatures.


2016 ◽  
Vol 16 (3) ◽  
pp. 43-48 ◽  
Author(s):  
G. Gumienny ◽  
L. Klimek ◽  
B. Kurowska

Abstract The paper presents the microstructure and selected properties of ausferritic nodular cast iron annealed at the temperature 520 and 550°C. This choice was dictated by the temperatures used in the practice of nitriding. Nodular graphite in cast iron was obtained with use of Inmold process. Cast iron containing molybdenum and copper ensuring obtaining an ausferrite in the cast iron matrix without the use of heat treatment of castings was tested. The effect of annealing temperature on the microstructure and the kind of fracture of the ausferritic nodular cast iron was presented. The effect of an annealing temperature on hardness, impact strength and the microhardness of ausferritic nodular cast iron matrix was shown too. The lamellar structure of phases in the cast iron matrix after annealing has been ascertained. There has been an increase in hardness of an annealed cast iron and microhardness of its matrix. The reduction in the impact strength of the cast iron annealed at 520 and 550°C was approximately 10-30%. Both an increase in the hardness of cast iron as well as an decrease in its impact strength is probably due to the separation of secondary carbides during the heat treatment.


2017 ◽  
Vol 8 (2) ◽  
pp. 41
Author(s):  
Sudarmanto Sudarmanto

Nodular cast iron is the cast iron that has nodular graphite spherical structure distributed in ferrite or pearlite matrix or in both of them. Recently, this material is used widely in industries because its low cost and better performance. The advanced metal industries nowadays have found some new technologies in order to improve the properties of materials. One of them is the addition of another elements into the base metals, such as nickel. The effects of the addition 1wt %, 2wt % and 3wt % nickel into nodular cast iron 50 on tensile and hardness properties were investigated in this study. The experimental results show that the best amount of nickel that added into nodular cast iron is 3% wt, which has the best tensile and hardness properties


2018 ◽  
Vol 925 ◽  
pp. 140-146
Author(s):  
Abel Tadesse ◽  
Hasse Fredriksson

The volume changes during solidification of Nodular Cast Iron (NCI) in the sand mold studied using Linear Variable Differential Transformer (LVDT). Both hypo- and hyper-eutectic compositions are considered by adjusting the carbon fraction in the composition during the experimental studies. The microstructural analysis and measurements are taken from the samples to evaluate the different phases present, the nodule count and size distributions. At the beginning of solidification, the experimental result shows the volume change is negligible. During the eutectic growth, the samples expand until the end of solidification. The displacement measurement shows the expansion continued when solidification finished. The volume change studies during solidification indicate that as the carbon fraction increases the volume expansion decreases. On the other hand, it is found that the pore fraction decreases as the volume expansion decreases. The fraction of primary austenite decreases as the fraction of carbon increases, and that leads to having a lower pore fraction.


2014 ◽  
Vol 82 ◽  
pp. 378-390 ◽  
Author(s):  
F.D. Carazo ◽  
S.M. Giusti ◽  
A.D. Boccardo ◽  
L.A. Godoy

Sign in / Sign up

Export Citation Format

Share Document