scholarly journals Analysis of forming thin titanium panels with stiffeners

2017 ◽  
Vol 62 (1) ◽  
pp. 173-180
Author(s):  
J. Adamus ◽  
J. Winowiecka ◽  
M. Dyner

Abstract The growing demand for light and durable products has caused an increase in interest in products formed of thin sheets. In order to ensure sufficient stiffness of the drawn - parts, stiffening is often performed. Unfortunately, during the forming of stiffeners unwanted deformations of the drawn parts very often appear, which prevent them from further exploitation. In the paper, forming thin titanium panels with stiffeners is analysed. The panels are made of sheets of commercially pure titanium: Grades 2, 3 and 4. In the results of numerical analyses which were performed using PamStamp 2G, taking into consideration the impact of the blank holder force and friction conditions on the strain distribution in the drawn parts, sheet thinning and springback values are presented. The numerical analysis results were compared with the experimental tests. It was concluded that in order to prevent panel deformation being a result of residual stresses, it is necessary to ensure adequate friction conditions on the contact surfaces between the deformed material and tools as well as a suitable blank holder force.

2015 ◽  
Vol 60 (3) ◽  
pp. 1895-1900 ◽  
Author(s):  
K. Dyja ◽  
W. Więckowski

Abstract An important factor in the possibility of obtaining correct drawn parts with the desired functional properties is the friction between the stamped sheet and the tool. The article discusses the impact of technological lubricants developed according to our own formulas, based on vegetable oils, on the stamping process taking into account the strain distributions in the drawn parts. Biodegradable lubricants based on rapeseed oil with an addition of stearic acid or boric acid were used. The results of the friction coefficient in a strip drawing test and the numerical analysis results of the stamping process of a spherical cap from sheet metal: aluminium 2024, commercially pure titanium Grade 2, steel 5604 in dry friction and lubrication conditions, are presented. Strain distributions and changes in the drawn part wall thickness were analysed.


2020 ◽  
Vol 321 ◽  
pp. 09005
Author(s):  
La Chance LEPEMANGOYE ◽  
Nicolas CRETON ◽  
Virgil OPTASANU ◽  
Elise DELOYE ◽  
Tony MONTESIN ◽  
...  

In this article, we study the impact of rolling conditions on the texture of the commercially pure titanium grade 2. In a previous work, NEOTISS in collaboration with ICB laboratory, shown that the texture highly influences the precipitation of hydrides in Titanium. In order to create different textures, Titanium sheets grade 2 are cold rolled asymmetrically and symmetrically with or without lubricant. The inverse pole figures and direct pole figures obtained allow us to deduce that symmetrical cold rolling does not change the grains orientation but generates a rotation of grains along c-axis (normal to basal plan). However, asymmetrical cold rolling leads to the formation of a new crystallographic texture, which could limit the formation of the hydrides in titanium grade 2 submitted to a hydrogen-rich environment. Key words: asymmetrical rolling, symmetrical rolling, titanium, hydriding, texture


2017 ◽  
Vol 184 ◽  
pp. 274-283 ◽  
Author(s):  
Alessandro Ascari ◽  
Alessandro Fortunato ◽  
Giacomo Guerrini ◽  
Erica Liverani ◽  
Adrian Lutey

2013 ◽  
Vol 58 (1) ◽  
pp. 139-143 ◽  
Author(s):  
P. Lacki ◽  
J. Adamus ◽  
W. Wieckowski ◽  
J. Winowiecka

In the paper experimental and numerical results of sheet-metal forming of titanium welded blanks are presented. Commercially pure titanium Grade 2 (Gr 2) and Ti6Al4V titanium alloy (Gr 5) are tested. Forming the spherical cups from the welded Gr 2 || Gr 5 blanks, and uniform Gr 2 and Gr 5 blanks is analysed. Numerical simulations were performed using the PamStamp 2G v2012 program based on the finite element method (FEM). Additionally, drawability tests using the tool consisting of die, hemispherical punch and blank-holder were carried out. Thickness changes and plastic strain distributions in the deformed material are analysed. The obtained results show some difficulties occurring during forming of the welded blanks made of titanium sheets at the same thicknesses but at different grades. It provide important information about the process course and might be useful in design and optimization of the sheet-titanium forming process.


2014 ◽  
Vol 55 ◽  
pp. 683-689 ◽  
Author(s):  
H. Nasiri-Abarbekoh ◽  
R. Abbasi ◽  
A. Ekrami ◽  
A.A. Ziaei-Moayyed

2020 ◽  
Vol 321 ◽  
pp. 04009
Author(s):  
Min-Su Lee ◽  
Yong-Taek Hyun ◽  
Tea-Sung Jun

In this study, we have investigated the effect of oxygen contents on strain rate senstivitiy (SRS) within Gr. 1 and 4 commercially pure titanium (CP-Ti). The SRS was evaluated in multi-scales using macro-scopic tensile test with constant strain rate (CSR) method and strain rate jump (SRJ) method, and nanoindentation test with SRJ method. Electron backscatter diffraction (EBSD) has been used to characterise crystallographic texture and individual grain orientation of samples. Slip and twin activities of each CP-Ti were compared by EBSD measurements and the associated Schmid factor (SF) analysis. The active slip system is anticipated to be different in each relation between loading directions and textures, but twin activity is much similar. The texture dependent global SRS is thus thought to be resulted from the different slip activity. Local SRS was dependent not only on the grain orientation but also on the oxygen contents, leading to the fact that the impact of oxygen contents is closely correlated in macro- and micro-scopic level.


Author(s):  
AH Bamdad ◽  
R Hashemi

Wrinkling, which is primarily caused by insufficient blank holder force, is a significant issue that induces inconsistencies in forming parts, particularly in the deep drawing process. In this article, an investigation of the wrinkling in the deep drawing process of two-layer sheets is performed through an analytical approach, numerical method, and experimental tests. Increasing in the blank holder force, the process is under control by the proposed algorithm. Consequently, it aims to find the minimum required blank holder force to avoid wrinkling. The energy technique is utilized to predict the wrinkling in the analytical approach. Similarly, finite element simulations are implemented to investigate the effect of forming parameters on wrinkling. The experimental tests are performed to verify the analytical and numerical results. The impact of the material properties and stacking sequences (lay-up) on blank holder force and forming force are studied. Results show that the optimum blank holder force is dependent on the material properties, blank geometry, and layer stacking sequences. Also, a good agreement between analytical, numerical, and experimental results is achieved.


2018 ◽  
Vol 140 (6) ◽  
Author(s):  
N. Khayatan ◽  
H. M. Ghasemi ◽  
M. Abedini

The erosion–corrosion (EC) and pure erosion of commercially pure titanium have been investigated in a 3.5% sodium chloride solution containing 10, 30, and 60 g/l SiO2 particles with an average size of 318 μm. The tests were performed at impact velocities of 4, 6, and 9 m/s under two impact angles of 40 deg and 90 deg. Polarization technique was used to study corrosion behavior of the material during erosion–corrosion. The eroded surfaces were examined by a scanning electron microscope (SEM) and a surface profilometer. The pure erosion, corrosion, and erosion–corrosion rates increased as impact velocity and sand concentration increased. The corrosion rates of the eroding surfaces under a normal impact were lower than those at an impact angle of 40 deg. The S/T ratio, i.e., the ratio of synergy to erosion–corrosion rates was about 80% at an impact velocity of 4 m/s, which indicated the high effect of the electrochemical corrosion on the degradation of CP-Ti at low velocity. The S/T ratio decreased to 30% and 15% at the impact velocities of 6 and 9 m/s, respectively. The S/T ratio was also decreased with increasing sand concentration indicating a greater role of mechanical degradation upon the erosion–corrosion rate in the concentrated slurries.


Sign in / Sign up

Export Citation Format

Share Document