scholarly journals Experimental Investigation of Process Parameters in Drilling LM25 Composites Coated with Multi Wall Carbon Nano Tubes Using Sonication Process

2017 ◽  
Vol 62 (3) ◽  
pp. 1761-1770
Author(s):  
M. Sangeetha ◽  
S. Prakash

AbstractAluminium based metal matrix composites are widely used in automobile components such as cardan shaft of Chevrolet corvette, disc brake and engine push rod. In this experiment a Hybrid Metal Matrix Composites (HMMC) are fabricated and drilled. Drilling is the process of making slots in disc brake and thread in the engine parts. The surface quality of the drilled specimen depends on the speed, feed, drill type and the thrust force. Thrust force plays the major role in drilling the specimen. In this experiment HMMCs are fabricated using two processes-called, sonication and casting. Sonication is the process of coating the carbon nanotubes over the silicon carbide particles (SiCp). Semisolid stir casting is used to reinforce the coated SiCp in the LM 25 alloy. A drilling process is performed on HMMC to analyse the extent to which the input parameters influence the thrust force and Ovality. The tools used for drilling are solid carbide tools of three different diameters. Taguchi’s experimental design is adopted for the drilling operation. A mathematical model is used to determine the influence of input parameters on the outputs thrust force and ovality. This paper proves the combination of N3, f1and d1of the carbide tool results in the lowest value of thrust force and ovality while drilling HMMCs. In this work the HMMC is prepared by coating the abrasive nature, silicon carbide particle and there is a good interfacial bonding between the reinforced particle and matrix and the drilling process becomes smoother. The new being of this article is the treated ceramics, SiCp with carbon nanotubes. This HMMC shows the improved mechanical properties compared to other metal matrix composites surveyed in the literatures.

2021 ◽  
Author(s):  
Muniyappan Mani ◽  
Iyandurai Natesan

Abstract This research work focus on the formation of AA2024-carbon nanotubes-silicon hybrid metal matrixcomposites. Structure morphology, structural characterization, elemental identification and dielectric properties of AA 2024 in the presence of carbon nanotubes, silicon andits combinations at various proportions was evaluated using SEM, XRD, EDX and Hioki 3532-50 LCR Hi-Tester. A two-stage stir casting method was used for the fabrication of AA2024 hybrid metal matrix composites. It was observed that the size of the AA 2024 + 4% CNT + 2% Si composite wasfound to be 23.6 nm, this shows enhanced results than other composites prepared. Dielectric properties of composites were characterized as a function of composition and frequency. It was found that the dielectric constant, dielectric loss and dissipation factor decreases smoothly with an increase of reinforcements and also frequency.


Aluminum metal matrix composites with various reinforcements had pronounced prospective of meeting the criteria of recent engineering applications like aerospace, automobile, breakpads, sports, this is due to their enhancement of some mechanical properties by some addition of matrix in to decide material. The present study focuses on the fabrication of 6351 aluminum MMC hybrid composites reinforced with silicon carbide and graphite powder, followed by a wear test for characterization of the material. Although several methods are available for the fabrication of Al-Sic MMC, we have employed stir casting technique due to its simplicity and economical. In this work aluminum metal matrix composites reinforced with different weight fractions of 2%, 4%, 6% and 8% graphite and silicon carbide in equal proportion characteristics were compared with Al6351 alloy. It is found that the wear properties have been improved with increase in weight fraction of the reinforcements of silicon carbide and graphite in aluminum matrix


Author(s):  
C. Avinash ◽  
S. Ramaswamy ◽  
S. Raguraman ◽  
N. Muthukrishnan

The tool wear mechanism in machining of metal matrix composites (MMC) and its dependence on the percentage of reinforcements with MMC was investigated. Silicon carbide metal matrix composites of two samples were prepared by using stir casting method. Samples having 10 percentage & 20 percentage of silicon carbide particles (grain size ranging from 55 to 85 micron meter) by weight were fabricated in the form of cylindrical bars. Experiments were conducted in medium duty lathe by using poly crystalline diamond (PCD) insert of 1500 grade as cutting insert and the experiment was performed by using design of experiments (L27 orthogonal array) on two different samples and the parameters obtained were optimized by analyzing the power consumed by main spindle and surface finish of machined component. The results from machining of this fabricated Aluminum Alloy A356, reinforced with SiC particles MMC is highlighted in this paper. All trails were carried out with time duration of one minute. By setting these optimum parameters, tool wear study was carried out till the flank wear reached 0.4mm. The results showed that tool life was minimum while machining 20 percentage of SiC reinforcement MMC as compared with 10 percentage of SiC reinforcement. The tool wear images were captured by Cam scope with a magnification of 100X which supports the results.


2014 ◽  
Vol 984-985 ◽  
pp. 326-330
Author(s):  
T.M. Chenthil Jegan ◽  
D. Ravindran ◽  
M. Dev Anand

Metal Matrix Composites possesses high mechanical properties compared to unreinforced materials. Aluminium Matrix Composites (AMC) is attracted in the emerging world because of its low cost, less weight and enhanced mechanical properties. In the present study the enhancement in mechanical properties like hardness and tensile strength of AMCs by reinforcing AA 6061 matrix with silicon carbide (SiC) and boron carbide (B4C) particles are analyzed. By enhanced stir casting method aluminium matrix was reinforced with boron carbide particulates and silicon carbide particulates with the various weight percentage of 2.5 %,5% and 7.5%.The tensile strength and hardness was found to increase with the increase in wt% of the reinforcement. From the analysis it is observed that the mechanical property of B4C reinforced AMC is significantly good compared to SiC reinforced AMC.


Author(s):  
Farhan A Shamim ◽  
Akshay Dvivedi ◽  
Pradeep Kumar

In this work, metal matrix composites were fabricated using the electromagnetic stir casting process by adding 5 and 10 wt% silicon carbide in Al6063 alloy. Hardness, ultimate tensile strength, and yield strength of the developed Al6063/SiC/5p metal matrix composites have been improved by 17%, 18%, and 37%, respectively, in comparison with Al6063 alloy. Further, an improvement of 25%, 37%, and 71% in hardness, ultimate tensile strength, and yield strength, respectively, have been noted for Al6063/SiC/10p metal matrix composite in comparison with the Al6063 alloy. Results revealed that the hardness and strength of metal matrix composites were increased with silicon carbide addition in Al6063 alloy. The presence of different elements in metal matrix composites was identified by energy-dispersive X-ray spectroscopy and X-ray diffraction techniques. Energy-dispersive X-ray spectroscopy was used for elemental mapping observation of the metal matrix composites. Uniform distribution of reinforcement particles in the matrix with improved mechanical properties of metal matrix composites proved the adequacy of the electromagnetic stir casting process. The presence of facets and dimples in fractographs indicated the mixed mode of fracture. The average percentage porosity presented in Al6063/silicon carbide/5p and Al6063/SiC/10p metal matrix composites was found to be 4.68% and 5.22%, respectively.


2015 ◽  
Vol 766-767 ◽  
pp. 301-307 ◽  
Author(s):  
S. Dhanalakshmi ◽  
M. Jaivignesh ◽  
A. Suresh Babu ◽  
K. Shanmuga Sundaram

Metal matrix composites are the resultant of combination of two or more elements or compounds, possessing enhanced characteristics than the individual constituents present in them. This paper deals with the fabrication of Al 2014-SiC composite and investigation of its Microstructure and Mechanical properties. 2014 Aluminium alloy is characterized by good hardness. It is selected as the base metal. The Silicon Carbide is characterized by good strength and low density (3.21 g/cm3). It is chosen as the reinforcement. Silicon Carbide is coated with Nickel by electroless method to increase its wettability and binding properties. The fabrication of metal matrix composites is done by stir casting in a furnace, by introducing the required quantities of reinforcement into molten Aluminium alloy. The reinforcement and alloy is mixed by means of stirring, with the help of a stirrer. The base alloy and the composites are then tested for mechanical properties such as tensile strength, flexural strength, impact strength and hardness. The fabricated samples have higher tensile strength and impact strength than the alloy. Microstructure of the samples, are analyzed using optical microscope.


2015 ◽  
Vol 766-767 ◽  
pp. 293-300 ◽  
Author(s):  
K. Velavan ◽  
K. Palanikumar

Nowadays, the usage of metal matrix composites is increased in aero space, automotive, marine, electronic and manufacturing industries. Aluminum metal matrix composites have attained significant attention due to their good mechanical properties like strength, stiffness, abrasion and impact resistant, corrosion resistance. When compared to the conventional materials Aluminum Silicon Carbide (AlSiC) hybrid materials available in minimum cost. In the present study, based on the literature review, the individual Silicon Carbide with aluminum and combined influence of Silicon Carbide with graphite reinforcements Aluminium Metal Matrix Composites and Silicon Carbide with mica reinforcement Aluminum is studied. The monolithic composite materials are combined in different compositions by stir casting fabrication techniques, to produce composite materials. The literature review framework in this paper provides a clear overview of the usage of Graphite and Mica as a reinforcing agent in different composition matrices along with its distinctive performances.


2015 ◽  
Vol 787 ◽  
pp. 568-572 ◽  
Author(s):  
A. Radha ◽  
K.R. Vijayakumar

Composite materials like Aluminium metal matrix composite is playing a very important role in manufacturing industries e.g. automobile and aerospace industries, due to their superior properties such as light weight, low density, high specific modulus, high fatigue strength etc., In this study Aluminium(Al 6061) is reinforced with Silicon Carbide particles and fabricated by Stir Casting Technique (vortex method). The MMC rectangular bars (samples) are prepared with Al6061 and SiC (28 µ size) as the reinforced particles by weight fraction from 0%, 5%, 10%, and 15% of SiC. The microstructure analysis and Mechanical properties like Tensile Strength, Vickers Hardness and Charpy Impact Strength were investigated on prepared specimens. It is observed that the properties are increased with increasing of reinforced specimens by weight fraction.


Sign in / Sign up

Export Citation Format

Share Document