scholarly journals The applications of deep neural networks to sdBV classification

2017 ◽  
Vol 26 (1) ◽  
Author(s):  
Thomas M. Boudreaux

AbstractWith several new large-scale surveys on the horizon, including LSST, TESS, ZTF, and Evryscope, faster and more accurate analysis methods will be required to adequately process the enormous amount of data produced. Deep learning, used in industry for years now, allows for advanced feature detection in minimally prepared datasets at very high speeds; however, despite the advantages of this method, its application to astrophysics has not yet been extensively explored. This dearth may be due to a lack of training data available to researchers. Here we generate synthetic data loosely mimicking the properties of acoustic mode pulsating stars and we show that two separate paradigms of deep learning - the Artificial Neural Network And the Convolutional Neural Network - can both be used to classify this synthetic data effectively. And that additionally this classification can be performed at relatively high levels of accuracy with minimal time spent adjusting network hyperparameters.

2019 ◽  
Author(s):  
Yosuke Toda ◽  
Fumio Okura ◽  
Jun Ito ◽  
Satoshi Okada ◽  
Toshinori Kinoshita ◽  
...  

Incorporating deep learning in the image analysis pipeline has opened the possibility of introducing precision phenotyping in the field of agriculture. However, to train the neural network, a sufficient amount of training data must be prepared, which requires a time-consuming manual data annotation process that often becomes the limiting step. Here, we show that an instance segmentation neural network (Mask R-CNN) aimed to phenotype the barley seed morphology of various cultivars, can be sufficiently trained purely by a synthetically generated dataset. Our attempt is based on the concept of domain randomization, where a large amount of image is generated by randomly orienting the seed object to a virtual canvas. After training with such a dataset, performance based on recall and the average Precision of the real-world test dataset achieved 96% and 95%, respectively. Applying our pipeline enables extraction of morphological parameters at a large scale, enabling precise characterization of the natural variation of barley from a multivariate perspective. Importantly, we show that our approach is effective not only for barley seeds but also for various crops including rice, lettuce, oat, and wheat, and thus supporting the fact that the performance benefits of this technique is generic. We propose that constructing and utilizing such synthetic data can be a powerful method to alleviate human labor costs needed to prepare the training dataset for deep learning in the agricultural domain.


2020 ◽  
Vol 29 (01) ◽  
pp. 129-138 ◽  
Author(s):  
Anirudh Choudhary ◽  
Li Tong ◽  
Yuanda Zhu ◽  
May D. Wang

Introduction: There has been a rapid development of deep learning (DL) models for medical imaging. However, DL requires a large labeled dataset for training the models. Getting large-scale labeled data remains a challenge, and multi-center datasets suffer from heterogeneity due to patient diversity and varying imaging protocols. Domain adaptation (DA) has been developed to transfer the knowledge from a labeled data domain to a related but unlabeled domain in either image space or feature space. DA is a type of transfer learning (TL) that can improve the performance of models when applied to multiple different datasets. Objective: In this survey, we review the state-of-the-art DL-based DA methods for medical imaging. We aim to summarize recent advances, highlighting the motivation, challenges, and opportunities, and to discuss promising directions for future work in DA for medical imaging. Methods: We surveyed peer-reviewed publications from leading biomedical journals and conferences between 2017-2020, that reported the use of DA in medical imaging applications, grouping them by methodology, image modality, and learning scenarios. Results: We mainly focused on pathology and radiology as application areas. Among various DA approaches, we discussed domain transformation (DT) and latent feature-space transformation (LFST). We highlighted the role of unsupervised DA in image segmentation and described opportunities for future development. Conclusion: DA has emerged as a promising solution to deal with the lack of annotated training data. Using adversarial techniques, unsupervised DA has achieved good performance, especially for segmentation tasks. Opportunities include domain transferability, multi-modal DA, and applications that benefit from synthetic data.


2021 ◽  
Vol 5 (1) ◽  
pp. 9
Author(s):  
Qiang Fang ◽  
Clemente Ibarra-Castanedo ◽  
Xavier Maldague

In quality evaluation (QE) of the industrial production field, infrared thermography (IRT) is one of the most crucial techniques used for evaluating composite materials due to the properties of low cost, fast inspection of large surfaces, and safety. The application of deep neural networks tends to be a prominent direction in IRT Non-Destructive Testing (NDT). During the training of the neural network, the Achilles heel is the necessity of a large database. The collection of huge amounts of training data is the high expense task. In NDT with deep learning, synthetic data contributing to training in infrared thermography remains relatively unexplored. In this paper, synthetic data from the standard Finite Element Models are combined with experimental data to build repositories with Mask Region based Convolutional Neural Networks (Mask-RCNN) to strengthen the neural network, learning the essential features of objects of interest and achieving defect segmentation automatically. These results indicate the possibility of adapting inexpensive synthetic data merging with a certain amount of the experimental database for training the neural networks in order to achieve the compelling performance from a limited collection of the annotated experimental data of a real-world practical thermography experiment.


Author(s):  
Tianle Ma ◽  
Aidong Zhang

While deep learning has achieved great success in computer vision and many other fields, currently it does not work very well on patient genomic data with the “big p, small N” problem (i.e., a relatively small number of samples with highdimensional features). In order to make deep learning work with a small amount of training data, we have to design new models that facilitate few-shot learning. Here we present the Affinity Network Model (AffinityNet), a data efficient deep learning model that can learn from a limited number of training examples and generalize well. The backbone of the AffinityNet model consists of stacked k-Nearest-Neighbor (kNN) attention pooling layers. The kNN attention pooling layer is a generalization of the Graph Attention Model (GAM), and can be applied to not only graphs but also any set of objects regardless of whether a graph is given or not. As a new deep learning module, kNN attention pooling layers can be plugged into any neural network model just like convolutional layers. As a simple special case of kNN attention pooling layer, feature attention layer can directly select important features that are useful for classification tasks. Experiments on both synthetic data and cancer genomic data from TCGA projects show that our AffinityNet model has better generalization power than conventional neural network models with little training data.


2021 ◽  
Author(s):  
Alexander Zizka ◽  
Tobias Andermann ◽  
Daniele Silvestro

Aim: The global Red List (RL) from the International Union for the Conservation of Nature is the most comprehensive global quantification of extinction risk, and widely used in applied conservation as well as in biogeographic and ecological research. Yet, due to the time-consuming assessment process, the RL is biased taxonomically and geographically, which limits its application on large scales, in particular for understudied areas such as the tropics, or understudied taxa, such as most plants and invertebrates. Here we present IUCNN, an R-package implementing deep learning models to predict species RL status from publicly available geographic occurrence records (and other traits if available). Innovation: We implement a user-friendly workflow to train and validate neural network models, and subsequently use them to predict species RL status. IUCNN contains functions to address specific issues related to the RL framework, including a regression-based approach to account for the ordinal nature of RL categories and class imbalance in the training data, a Bayesian approach for improved uncertainty quantification, and a target accuracy threshold approach that limits predictions to only those species whose RL status can be predicted with high confidence. Most analyses can be run with few lines of code, without prior knowledge of neural network models. We demonstrate the use of IUCNN on an empirical dataset of ~14,000 orchid species, for which IUCNN models can predict extinction risk within minutes, while outperforming comparable methods. Main conclusions: IUCNN harnesses innovative methodology to estimate the RL status of large numbers of species. By providing estimates of the number and identity of threatened species in custom geographic or taxonomic datasets, IUCNN enables large-scale analyses on the extinction risk of species so far not well represented on the official RL.


2021 ◽  
Vol 13 (3) ◽  
pp. 364
Author(s):  
Han Gao ◽  
Jinhui Guo ◽  
Peng Guo ◽  
Xiuwan Chen

Recently, deep learning has become the most innovative trend for a variety of high-spatial-resolution remote sensing imaging applications. However, large-scale land cover classification via traditional convolutional neural networks (CNNs) with sliding windows is computationally expensive and produces coarse results. Additionally, although such supervised learning approaches have performed well, collecting and annotating datasets for every task are extremely laborious, especially for those fully supervised cases where the pixel-level ground-truth labels are dense. In this work, we propose a new object-oriented deep learning framework that leverages residual networks with different depths to learn adjacent feature representations by embedding a multibranch architecture in the deep learning pipeline. The idea is to exploit limited training data at different neighboring scales to make a tradeoff between weak semantics and strong feature representations for operational land cover mapping tasks. We draw from established geographic object-based image analysis (GEOBIA) as an auxiliary module to reduce the computational burden of spatial reasoning and optimize the classification boundaries. We evaluated the proposed approach on two subdecimeter-resolution datasets involving both urban and rural landscapes. It presented better classification accuracy (88.9%) compared to traditional object-based deep learning methods and achieves an excellent inference time (11.3 s/ha).


2021 ◽  
Vol 11 (15) ◽  
pp. 7148
Author(s):  
Bedada Endale ◽  
Abera Tullu ◽  
Hayoung Shi ◽  
Beom-Soo Kang

Unmanned aerial vehicles (UAVs) are being widely utilized for various missions: in both civilian and military sectors. Many of these missions demand UAVs to acquire artificial intelligence about the environments they are navigating in. This perception can be realized by training a computing machine to classify objects in the environment. One of the well known machine training approaches is supervised deep learning, which enables a machine to classify objects. However, supervised deep learning comes with huge sacrifice in terms of time and computational resources. Collecting big input data, pre-training processes, such as labeling training data, and the need for a high performance computer for training are some of the challenges that supervised deep learning poses. To address these setbacks, this study proposes mission specific input data augmentation techniques and the design of light-weight deep neural network architecture that is capable of real-time object classification. Semi-direct visual odometry (SVO) data of augmented images are used to train the network for object classification. Ten classes of 10,000 different images in each class were used as input data where 80% were for training the network and the remaining 20% were used for network validation. For the optimization of the designed deep neural network, a sequential gradient descent algorithm was implemented. This algorithm has the advantage of handling redundancy in the data more efficiently than other algorithms.


Sensors ◽  
2021 ◽  
Vol 21 (8) ◽  
pp. 2852
Author(s):  
Parvathaneni Naga Srinivasu ◽  
Jalluri Gnana SivaSai ◽  
Muhammad Fazal Ijaz ◽  
Akash Kumar Bhoi ◽  
Wonjoon Kim ◽  
...  

Deep learning models are efficient in learning the features that assist in understanding complex patterns precisely. This study proposed a computerized process of classifying skin disease through deep learning based MobileNet V2 and Long Short Term Memory (LSTM). The MobileNet V2 model proved to be efficient with a better accuracy that can work on lightweight computational devices. The proposed model is efficient in maintaining stateful information for precise predictions. A grey-level co-occurrence matrix is used for assessing the progress of diseased growth. The performance has been compared against other state-of-the-art models such as Fine-Tuned Neural Networks (FTNN), Convolutional Neural Network (CNN), Very Deep Convolutional Networks for Large-Scale Image Recognition developed by Visual Geometry Group (VGG), and convolutional neural network architecture that expanded with few changes. The HAM10000 dataset is used and the proposed method has outperformed other methods with more than 85% accuracy. Its robustness in recognizing the affected region much faster with almost 2× lesser computations than the conventional MobileNet model results in minimal computational efforts. Furthermore, a mobile application is designed for instant and proper action. It helps the patient and dermatologists identify the type of disease from the affected region’s image at the initial stage of the skin disease. These findings suggest that the proposed system can help general practitioners efficiently and effectively diagnose skin conditions, thereby reducing further complications and morbidity.


Author(s):  
Yuheng Hu ◽  
Yili Hong

Residents often rely on newspapers and television to gather hyperlocal news for community awareness and engagement. More recently, social media have emerged as an increasingly important source of hyperlocal news. Thus far, the literature on using social media to create desirable societal benefits, such as civic awareness and engagement, is still in its infancy. One key challenge in this research stream is to timely and accurately distill information from noisy social media data streams to community members. In this work, we develop SHEDR (social media–based hyperlocal event detection and recommendation), an end-to-end neural event detection and recommendation framework with a particular use case for Twitter to facilitate residents’ information seeking of hyperlocal events. The key model innovation in SHEDR lies in the design of the hyperlocal event detector and the event recommender. First, we harness the power of two popular deep neural network models, the convolutional neural network (CNN) and long short-term memory (LSTM), in a novel joint CNN-LSTM model to characterize spatiotemporal dependencies for capturing unusualness in a region of interest, which is classified as a hyperlocal event. Next, we develop a neural pairwise ranking algorithm for recommending detected hyperlocal events to residents based on their interests. To alleviate the sparsity issue and improve personalization, our algorithm incorporates several types of contextual information covering topic, social, and geographical proximities. We perform comprehensive evaluations based on two large-scale data sets comprising geotagged tweets covering Seattle and Chicago. We demonstrate the effectiveness of our framework in comparison with several state-of-the-art approaches. We show that our hyperlocal event detection and recommendation models consistently and significantly outperform other approaches in terms of precision, recall, and F-1 scores. Summary of Contribution: In this paper, we focus on a novel and important, yet largely underexplored application of computing—how to improve civic engagement in local neighborhoods via local news sharing and consumption based on social media feeds. To address this question, we propose two new computational and data-driven methods: (1) a deep learning–based hyperlocal event detection algorithm that scans spatially and temporally to detect hyperlocal events from geotagged Twitter feeds; and (2) A personalized deep learning–based hyperlocal event recommender system that systematically integrates several contextual cues such as topical, geographical, and social proximity to recommend the detected hyperlocal events to potential users. We conduct a series of experiments to examine our proposed models. The outcomes demonstrate that our algorithms are significantly better than the state-of-the-art models and can provide users with more relevant information about the local neighborhoods that they live in, which in turn may boost their community engagement.


2021 ◽  
Vol 10 (9) ◽  
pp. 25394-25398
Author(s):  
Chitra Desai

Deep learning models have demonstrated improved efficacy in image classification since the ImageNet Large Scale Visual Recognition Challenge started since 2010. Classification of images has further augmented in the field of computer vision with the dawn of transfer learning. To train a model on huge dataset demands huge computational resources and add a lot of cost to learning. Transfer learning allows to reduce on cost of learning and also help avoid reinventing the wheel. There are several pretrained models like VGG16, VGG19, ResNet50, Inceptionv3, EfficientNet etc which are widely used.   This paper demonstrates image classification using pretrained deep neural network model VGG16 which is trained on images from ImageNet dataset. After obtaining the convolutional base model, a new deep neural network model is built on top of it for image classification based on fully connected network. This classifier will use features extracted from the convolutional base model.


Sign in / Sign up

Export Citation Format

Share Document