scholarly journals Modelling the Effect of Weave Structure and Fabric Thread Density on Mechanical and Comfort Properties of Woven Fabrics

2016 ◽  
Vol 16 (3) ◽  
pp. 160-164
Author(s):  
Muhammad Maqsood ◽  
Yasir Nawab ◽  
Khubab Shaker ◽  
Muhammad Umair ◽  
Munir Ashraf ◽  
...  

Abstract The paper investigates the effects of weave structure and fabric thread density on the comfort and mechanical properties of various test fabrics woven from polyester/cotton yarns. Three different weave structures, that is, 1/1 plain, 2/1 twill and 3/1 twill, and three different fabric densities were taken as input variables whereas air permeability, overall moisture management capacity, tensile strength and tear strength of fabrics were taken as response variables and a comparison is made of the effect of weave structure and fabric density on the response variables. The results of fabric samples were analysed in Minitab statistical software. The coefficients of determinations (R-sq values) of the regression equations show a good predictive ability of the developed statistical models. The findings of the study may be helpful in deciding appropriate manufacturing specifications of woven fabrics to attain specific comfort and mechanical properties.

2014 ◽  
Vol 660 ◽  
pp. 125-129 ◽  
Author(s):  
Md. Saidin Wahab ◽  
Muhammad Nazri Rejab ◽  
Mohd Pahmi Saiman

Woven composite based on natural fiber increasingly used for many applications in industries because of their advantages such as good relative mechanical properties and renewable resources, but there are some issues as cost and protracted development period to perform reliability evaluation by experimental with real scale. Predictive modeling technique is use to minimize the need for physical testing, shorten design timescales and provide optimized designs. Mechanical properties of woven fabrics for technical textile depend on a) type of raw materials b) type and count of warp and weft yarns c) yarn density and d) the type of weave structure. The effect of fabric architecture to the mechanical properties is investigated. Woven kenaf composite is modeled using the modeling software to get the properties of the model. Further, the model is analyzed using finite element analysis to predict the mechanical properties of the woven kenaf composite. In addition, the effect of the combination of yarn size and weave pattern to the woven kenaf composite is stated base on the mechanical properties to predict the optimum structure of woven kenaf composite.


2021 ◽  
pp. 1-16
Author(s):  
Desalegn Atalie ◽  
Rotich Gideon ◽  
Getnet Melesse ◽  
Eyasu Ferede ◽  
Frezer Getnet ◽  
...  
Keyword(s):  

2021 ◽  
pp. 096739112110239
Author(s):  
Sheedev Antony ◽  
Abel Cherouat ◽  
Guillaume Montay

Nowadays natural fibre composites have gained great significance as reinforcements in polymer matrix composites. Composite material based on a polymer matrix reinforced with natural fibres is extensively used in industry due to their biodegradability, recyclability, low density and high specific properties. A study has been carried out here to investigate the fibre volume fraction effect of hemp fibre woven fabrics/PolyPropylene (PP) composite laminates on the tensile properties and impact hammer impact test. Initially, composite sheets were fabricated by the thermal-compression process with desired number of fabric layers to obtain composite laminates with different fibre volume fraction. Uniaxial, shear and biaxial tensile tests were performed and mechanical properties were calculated. Impact hammer test was also carried out to estimate the frequency and damping parameters of stratified composite plates. Scanning Electron Microscope (SEM) analysis was performed to observe the matrix and fibre constituent defects. Hemp fabrics/PP composite laminates exhibits viscoelastic behaviour and as the fibre volume fraction increases, the viscoelastic behaviour decreases to elastic behaviour. Due to this, the tensile strength increases as the fibre content increases. On the other hand, the natural frequency increases and damping ratio decrease as the fibre volume fraction increases.


2021 ◽  
pp. 004051752098497
Author(s):  
Ning Mao ◽  
Xiaohong Qin ◽  
Liming Wang ◽  
Jianyong Yu

Wet comfort is a critical performance for fabrics, especially when human bodies release sweat in daily life. Despite excellent moisture absorption performance, cotton yarns are still limited in the moisture release/transfer ability. Here, based on a novel electrospinning technology, polyacrylonitrile and polystyrene (PS) electrospun nanofiber/cotton composite yarns were produced, respectively. Under fluorescence microscopic observation, electrospun fibers within the composite yarns showed a uniform distribution. As a result, these composite yarn-based knitted fabrics obtained a good water transport ability and a fast water evaporation rate. According to the moisture management test, PS electrospun nanofiber composite yarn-based fabrics exhibited a relatively high one-way transport index R (400%), claiming an enhanced moisture management performance. Finally, specific surface area tests and finite element analyses were used to analyze the water transport mechanism inside the yarns. The results proved that a small number of electrospun fibers played a predominant role in enhancing the moisture management ability of the composite yarns.


Author(s):  
Antao Deng ◽  
Bin Ji ◽  
Xiang Zhou

A new geometric design method for foldcores based on the generalized Resch patterns that allow face-to-face bonding interfaces between the core and the skins is proposed. Based on the geometric design method, a systematic numerical investigation on the quasi-static mechanical properties of the generalized Resch-based foldcores made of carbon fiber-reinforced plastic (CFRP) woven fabrics subjected to compression and shear loads is performed using the finite element method that is validated by experiments. The relationships between the mechanical properties and various geometric parameters as well as laminate thickness of the generalized Resch-based CFRP foldcores are revealed. Additionally, the mechanical properties of the generalized Resch-based CFRP foldcore are compared to those of the standard Resch-based, Miura-based foldcore, the honeycomb core, and the aluminum counterpart. It is found that the generalized Resch-based CFRP foldcore performs more stably than the honeycomb core under compression and has higher compressive and shear stiffnesses than the standard Resch-based and Miura-based foldcores and absorbs as nearly twice energy under compression as the Miura-based foldcore does. When compared with the aluminum counterpart, the CFRP model has higher weight-specific stiffness and strength but lower energy absorption capacity under shearing. The results presented in this paper can serve as the useful guideline for the design of the generalized Resch-based composite foldcore sandwich structures for various performance goals.


2011 ◽  
Vol 70 ◽  
pp. 405-409 ◽  
Author(s):  
Emrah Demirci ◽  
Memiş Acar ◽  
Behnam Pourdeyhimi ◽  
Vadim V. Silberschmidt

Having a unique microstructure, nonwoven fabrics possess distinct mechanical properties, dissimilar to those of woven fabrics and composites. This paper aims to introduce a methodology for simulating a dynamic response of core/sheath-type thermally bonded bicomponent fibre nonwovens. The simulated nonwoven fabric is treated as an assembly of two regions with distinct mechanical properties. One region - the fibre matrix – is composed of non-uniformly oriented core/sheath fibres acting as link between bond points. Non-uniform orientation of individual fibres is introduced into the model in terms of the orientation distribution function in order to calculate the structure’s anisotropy. Another region – bond points – is treated in simulations as a deformable bicomponent composite material, composed of the sheath material as its matrix and the core material as reinforcing fibres with random orientations. Time-dependent anisotropic mechanical properties of these regions are assessed based on fibre characteristics and manufacturing parameters such as the planar density, core/sheath ratio, fibre diameter etc. Having distinct anisotropic mechanical properties for two regions, dynamic response of the fabric is modelled in the finite element software with shell elements with thicknesses identical to those of the bond points and fibre matrix.


2015 ◽  
Vol 35 (4) ◽  
pp. 377-390 ◽  
Author(s):  
Andrzej Ambroziak

Abstract This article describes the laboratory tests necessary to identify the mechanical properties of the polyvinylidene fluoride (PVDF)-coated fabrics named Precontraint 1202S and Precontraint 1302S. First, a short survey of the literature concerning the description of coated woven fabrics is presented. Second, the material parameters for PVDF-coated fabrics are specified on the basis of biaxial tensile tests. A comparison of the 1:1 biaxial and the uniaxial tensile tests results is also given. Additionally, biaxial cyclic tests were performed to observe the change of immediate mechanical properties under cyclic load. The article is aimed as an introduction to a comprehensive investigation of the mechanical properties of coated fabrics.


2021 ◽  
pp. 34-38
Author(s):  
R. L. Shatalov ◽  
V. A. Medvedev

When controlling the mechanical properties and structure of vessels made of carbon structural steels manufactured by hot deformation on rolling and pressing lines (PPL) of machine-building enterprises of Russia, such cooling media as water, I20 industrial mineral oil, air are used. The applied cooling media are able to provide the workpieces with a given structure with a wide range of mechanical properties. However, the cooling media have a number of technological limitations and conditions of the use, non-compliance with which leads to reject. When cooled in oil, the probability of ignition is high; when cooled in water, hardening cracks may form, and air is not always able to provide the required rate and uniformity of heat transfer to the environment. The efficiency of control of physical and mechanical properties and structure of deformed vessels made of 50 steel by cooling in TERMAT polymer aqueous solutions in different concentrations on PPL of the plant of JSC NPO Pribor was studied. The effect of varying the concentration from 2 to 9% of TERMAT polymer on the formation of metal structure, as well as physical and mechanical properties of hot-deformed vessels was studied. The results of testing the strength and plastic characteristics of vessels by destructive and non-destructive control methods are presented. According to the results of physical and mechanical properties, regression equations were obtained with at least 95% reliability of R2, which establish the relationship between the controlled plastic and strength parameters of the vessel metal`s properties. The conducted researches allowed to compare the indicators of the main physical and mechanical properties of steel vessels at the PPL outlet and to propose methods of inhomogeneity control that reduce time and material costs by 5–10% during the tests.


2019 ◽  
pp. 7-8
Author(s):  
M. M. Egorov ◽  
V. I. Milov ◽  
M. K. Timin ◽  
T. P. Mukhina ◽  
V. S. Smirnov ◽  
...  

The effect of pressure, temperature and time during direct pressing on the strength and optical characteristics of adhesive plasticized polyvinyl butyral films is studied. A mathematical analysis of the results of a full factorial experiment is carried out and the regression equations are derived.


Sign in / Sign up

Export Citation Format

Share Document