scholarly journals Thickness Optimisation of Textiles Subjected to Heat and Mass Transport during Ironing

2016 ◽  
Vol 16 (3) ◽  
pp. 165-174 ◽  
Author(s):  
Ryszard Korycki ◽  
Halina Szafranska

Abstract Let us next analyse the coupled problem during ironing of textiles, that is, the heat is transported with mass whereas the mass transport with heat is negligible. It is necessary to define both physical and mathematical models. Introducing two-phase system of mass sorption by fibres, the transport equations are introduced and accompanied by the set of boundary and initial conditions. Optimisation of material thickness during ironing is gradient oriented. The first-order sensitivity of an arbitrary objective functional is analysed and included in optimisation procedure. Numerical example is the thickness optimisation of different textile materials in ironing device.

1964 ◽  
Vol 4 (01) ◽  
pp. 49-55 ◽  
Author(s):  
Pietro Raimondi ◽  
Michael A. Torcaso

Abstract The distribution of the oil phase in Berea sandstone resulting from increasing and decreasing the water saturation by imbibition was investigated Three types of distribution were recognized: trapped, normal and lagging. The amount of oil in each of these distributions was determined as a function of saturation by carrying out a miscible displacement in the oil phase under steady-state conditions of saturation. These conditions were maintained by flowing water and oil simultaneously in given ratios and by using a displacing solvent having essentially the same density and viscosity as the oil.A correlation shows the amount of trapped oil at any saturation to be directly proportional to the conventional residual oil saturation Sir The factor of proportionality is related to the fractional permeability to the water phase. Part of the oil which was not trapped was displaced in a piston- like manner (normal part) and part was eluted gradually (lagging part). The observed phenomena are more than of mere academic importance. Oil which is trapped may well provide the fuel essential for forward combustion and thus be beneficial. On the contrary, in tertiary recovery operations, it is this trapped oil which seems to make current techniques uneconomic. Introduction A typical oilfield may initially contain connate water and oil. After a period of primary production water often enters the field either from surrounding aquifers or from surface injection. During primary production evolution and establishment of a free gas saturation usually occurs. The effect and importance of this third phase is fully recognized. However, this investigation is limited to a two- phase system, one wetting phase (water) and one non-wetting phase (oil). The increase in water content of a water-wet system is termed imbibition. In a relative permeability-saturation diagram such as the one shown in Fig. 1, the initial conditions of the field would he represented by a point below a water saturation of about 35 per cent, i.e., where the imbibition and the drainage curves to the non-wetting phase nearly coincide. When water enters the field the relative permeability to oil decreases along the imbibition curve. At watered-out conditions the relative permeability to the oil becomes zero. At this point a considerable amount of oil, called residual oil, (about 35 per cent in Fig. 1) remains unrecovered. Any attempt to produce this oil will require that its saturation be increased. In Fig. 1 this would mean retracing the imbibition curve upwards. In addition, processes like alcohol and fire flooding, which can be employed at any stage of production, involve the complete displacement of connate water and an increase, or imbibition, of water saturation ahead of the displacing front. Thus, in several types of oil production it is the imbibition-relative permeability curve which rules the flow behavior. For this reason a knowledge of the distribution of the non-wetting phase, as obtained through imbibition, whether "coming down" or "going up" on the imbibition curve, is important. SPEJ P. 49^


We develop a theory for the dynamics of an interface in a two-phase elastic solid with kinetics driven by mass transport and stress. We consider a two-phase system consisting of bulk regions separated by a sharp interface endowed with energy and capable of supporting force. Our discussion is based on balance laws for mass and force in conjunction with a version of the second law - appropriate to a mechanical system out of equilibrium - which we use to develop a suitable constitutive theory for the interface. It is assumed that mass transport is characterized by the bulk diffusion of a single independent species; we neglect mass diffusion within the interface; limit our discussion to a continuous chemical potential and to a coherent interface; neglect the elasticity of the interface; and consider only infinitesimal deformations, neglecting inertia. We show that the field equations and free-boundary conditions can be developed in a simple manner in terms of the diffusion potential and its time derivatives, as opposed to the usual formulation in terms of concentration. Natural consequences of the thermodynamic framework are Lyapunov functions for the resulting evolution problems. This leads to a hierarchy of variational principles that should describe the equilibrium shapes of misfitting particles as well as possible microstructures that might form; these principles are applicable both in the absence and presence of an applied stress.


2021 ◽  
Vol 9 ◽  
Author(s):  
Boyan Meng ◽  
Yan Yang ◽  
Yonghui Huang ◽  
Olaf Kolditz ◽  
Haibing Shao

Underground thermal energy storage is an efficient technique to boost the share of renewable energies. However, despite being well-established, their environmental impacts such as the interaction with hydrocarbon contaminants is not intensively investigated. This study uses OpenGeoSys software to simulate the heat and mass transport of a borehole thermal energy storage (BTES) system in a shallow unconfined aquifer. A high-temperature (70 C) heat storage scenario was considered which imposes long-term thermal impact on the subsurface. Moreover, the effect of temperature-dependent flow and mass transport in a two-phase system is examined for the contaminant trichloroethylene (TCE). In particular, as subsurface temperatures are raised due to BTES operation, volatilization will increase and redistribute the TCE in liquid and gas phases. These changes are inspected for different scenarios in a contaminant transport context. The results demonstrated the promising potential of BTES in facilitating the natural attenuation of hydrocarbon contaminants, particularly when buoyant flow is induced to accelerate TCE volatilization. For instance, over 70% of TCE mass was removed from a discontinuous contaminant plume after 5 years operation of a small BTES installation. The findings of this study are insightful for an increased application of subsurface heat storage facilities, especially in contaminated urban areas.


Open Physics ◽  
2011 ◽  
Vol 9 (4) ◽  
Author(s):  
Frank Coutelieris

AbstractThe scope of this work is to estimate the effective mass-transfer coefficient in a two-phase system of oil and water fluid droplets, both being in a porous medium. To this end, a tracer is advected from the flowing aqueous phase to the immobile non-aqueous one. Partitioning at the fluid-fluid interface and surface diffusion are also taken into account. By using spatial/volume-averaging techniques, the appropriately simplified boundary-value problems are described and numerically solved for the flow velocity field and for the transport problem. The problem was found to be controlled by the Peclet number of the flowing phase, the dimensionless parameter Λ, containing both diffusion and partition in the two phases, as well as the geometrical properties of the porous structure. It is also verified that the usually involved unit cell-configurations underestimate the mass transport to the immobile phase.


Author(s):  
Robert B. Jordan

In this Chapter, a heterogeneous system is one in which the reactants are present in at least two phases. The discussion will concentrate on two such conditions, two-phase gas/liquid systems and three-phase gas/liquid/solid systems. Chemists tend to favor homogeneous conditions, with the reactants all in one phase, because they provide more controlled and reproducible conditions. However, heterogeneous conditions are often preferred in industrial processes because of the ease of separating the catalyst from the products. In many mechanistic studies, heterogeneity adds a complicating feature to be avoided, but there are times when this cannot be done, or when it happens unexpectedly. In gas/liquid systems, the gas often has limited solubility in the liquid which contains the other reagents. As a consequence, there can be problems of mass transport of the gaseous reactant from the gas to the liquid phase. Mass transport can limit the concentration of the gas in the liquid and/or become a rate-limiting feature of the system. These features can confuse interpretations of product distributions and rate laws. The gas/liquid/solid systems generally involve reactants in the gas and liquid phases and a catalyst as the solid phase. In some cases, the solid may be produced from initially homogeneous conditions, and a question arises as to whether the real catalyst is the original species added or the solid product formed under the reaction conditions. There are further questions about the factors that may control the rate of the catalytic process. In the chemistry laboratory, these systems are most often encountered with the gases H2 or CO reacting with substrate and possibly a catalyst in the liquid phase. For the mechanistic interpretation of kinetic observations, an important factor is the rate of mass transfer of the gas to the liquid phase. The rate of gas absorption into the liquid is typically represented as a first order process, driven by the difference between the saturated gas concentration [G(I)]f and the concentration at any time [G(I)], as given by where kLA is an effective first-order rate constant. This constant is taken as a product of an inherent absorption rate constant, kL, and something related to the surface area of the liquid phase, A.


1991 ◽  
Vol 24 (7) ◽  
pp. 59-64 ◽  
Author(s):  
R. W. Szetela

Steady-state models are presented to describe the wastewater treatment process in two activated sludge systems. One of these makes use of a single complete-mix reactor; the other one involves two complete-mix reactors arranged in series. The in-series system is equivalent to what is known as the “two-phase” activated sludge, a concept which is now being launched throughout Poland in conjunction with the PROMLECZ technology under implementation. Analysis of the mathematical models has revealed the following: (1) treatment efficiency, excess sludge production, energy consumption, and the degree of sludge stabilization are identical in the two systems; (2) there exists a technological equivalence of “two-phase” sludge with “single-phase” sludge; (3) the “two-phase” system has no technological advantage over the “single-phase” system.


1985 ◽  
Vol 50 (8) ◽  
pp. 1642-1647 ◽  
Author(s):  
Štefan Baláž ◽  
Anton Kuchár ◽  
Ernest Šturdík ◽  
Michal Rosenberg ◽  
Ladislav Štibrányi ◽  
...  

The distribution kinetics of 35 2-furylethylene derivatives in two-phase system 1-octanol-water was investigated. The transport rate parameters in direction water-1-octanol (l1) and backwards (l2) are partition coefficient P = l1/l2 dependent according to equations l1 = logP - log(βP + 1) + const., l2 = -log(βP + 1) + const., const. = -5.600, β = 0.261. Importance of this finding for assesment of distribution of compounds under investigation in biosystems and also the suitability of the presented method for determination of partition coefficients are discussed.


Author(s):  
Qiaoshu Chen ◽  
Yanwen Zhang ◽  
Hui Chen ◽  
Jianbo Liu ◽  
Juewen Liu

Sign in / Sign up

Export Citation Format

Share Document