Localization of Rat Cathepsin K in Osteoclasts and Resorption Pits: Inhibition of Bone Resorption and Cathepsin K-Activity by Peptidyl Vinyl Sulfones

1999 ◽  
Vol 380 (6) ◽  
Author(s):  
L. Xia ◽  
J. Kilb ◽  
H. Wex ◽  
Z. Li ◽  
A. Lipyansky ◽  
...  

AbstractWe have localized cathepsin K in rat osteoclasts and within exposed resorption pits by immuno-fluorescence microscopy. Intracellular staining using an antibody raised against recombinant mouse cathepsin K was vesicular and uniformly distributed throughout the cell. Confocal microscopy analysis did not reveal an accumulation of cathepsin K containing vesicles opposing the ruffled border and the resorption lacuna. Exposed resorption pits exhibited a uniform distribution of cathepsin K, and no differences were observed between the edges and the centers of the pits. The immunostaining of resorption pits with anti-cathepsin K antibodies demonstrates that the protease is secreted into the sub-osteoclastic compartment.Cathepsin K-specific inhibition using peptidyl vinyl sulfones as selective cysteine protease inactivators reduced bone resorption by 80% in a dose-dependent manner at sub-micromolar concentrations. No reduction of bone resorption was observed at those low concentrations using a potent cathepsin L, S, B-specific inhibitor. That the inhibition of bone resorption can be attributed to cathepsin K-like protease inhibition was corroborated by the selective inhibition of the osteoclastic Z-Gly-Pro-Arg-MβNA hydrolyzing activity by the cathepsin K, L, S, B-inhibitor, but not by the cathepsin L, B, and S inhibitor. Z-Gly-Pro-Arg-MβNA is efficiently hydrolyzed by cathepsin K but only poorly by cathepsins L, S, and B. On the contrary, the intracellular hydrolysis of the cathepsin B-specific substrate, Z-Arg-Arg-MβNA, was prevented by both types of inhibitors.The identification of cathepsin K in resorption pits and the inhibition of bone resorption and intracellular cathepsin K activity by selective vinyl sulfone inhibitors indicate the critical role of the protease in osteoclastic bone resorption.

2005 ◽  
Vol 386 (1) ◽  
pp. 75-83 ◽  
Author(s):  
Primož Meh ◽  
Miha Pavšič ◽  
Vito Turk ◽  
Antonio Baici ◽  
Brigita Lenarčič

Abstract The thyroglobulin type-1 (Tg-1) domain is a protein module that occurs in a variety of secreted and membrane proteins and is recognised as a potent inhibitor of cysteine peptidases. We present here some properties of the Tg-1 domain of human testican, a modularly organised proteoglycan secreted mainly by brain cells, the exact in vivo function of which is not yet clear. The domain was prepared as a recombinant protein in a Pichia pastoris expression system and its activity was demonstrated by specific and selective inhibition of cathepsin L (K i=0.14 nM). Interaction at high enzyme and inhibitor concentrations resulted in degradation of the domain by cathepsin L, which was not observed under conditions used for the determination of kinetic parameters. No inhibitory activity could be detected for cathepsin K, but it exhibited a very similar degradation pattern. Homology modelling provided a good explanation for the different behaviour observed with the two enzymes. Firstly, the steric fit between the interfaces of testican domain and cathepsin L is stabilised by numerous favourable forces, while no such interactions are evident in the complex with cathepsin K, and repulsive interactions even prevent access of the domain to the active site of papain. Secondly, the prolonged first loop of the domain occupies a position near the catalytic cysteine residue in a more substrate-like manner, enabling cleavage of the Gly22-Ala23 bond.


2016 ◽  
Vol 113 (11) ◽  
pp. 3036-3041 ◽  
Author(s):  
Pooja Singhmar ◽  
XiaoJiao Huo ◽  
Niels Eijkelkamp ◽  
Susana Rojo Berciano ◽  
Faiza Baameur ◽  
...  

cAMP signaling plays a key role in regulating pain sensitivity. Here, we uncover a previously unidentified molecular mechanism in which direct phosphorylation of the exchange protein directly activated by cAMP 1 (EPAC1) by G protein kinase 2 (GRK2) suppresses Epac1-to-Rap1 signaling, thereby inhibiting persistent inflammatory pain. Epac1−/− mice are protected against inflammatory hyperalgesia in the complete Freund’s adjuvant (CFA) model. Moreover, the Epac-specific inhibitor ESI-09 inhibits established CFA-induced mechanical hyperalgesia without affecting normal mechanical sensitivity. At the mechanistic level, CFA increased activity of the Epac target Rap1 in dorsal root ganglia of WT, but not of Epac1−/−, mice. Using sensory neuron-specific overexpression of GRK2 or its kinase-dead mutant in vivo, we demonstrate that GRK2 inhibits CFA-induced hyperalgesia in a kinase activity-dependent manner. In vitro, GRK2 inhibits Epac1-to-Rap1 signaling by phosphorylation of Epac1 at Ser-108 in the Disheveled/Egl-10/pleckstrin domain. This phosphorylation event inhibits agonist-induced translocation of Epac1 to the plasma membrane, thereby reducing Rap1 activation. Finally, we show that GRK2 inhibits Epac1-mediated sensitization of the mechanosensor Piezo2 and that Piezo2 contributes to inflammatory mechanical hyperalgesia. Collectively, these findings identify a key role of Epac1 in chronic inflammatory pain and a molecular mechanism for controlling Epac1 activity and chronic pain through phosphorylation of Epac1 at Ser-108. Importantly, using the Epac inhibitor ESI-09, we validate Epac1 as a potential therapeutic target for chronic pain.


Molecules ◽  
2018 ◽  
Vol 23 (12) ◽  
pp. 3139 ◽  
Author(s):  
Sun-Hee Ahn ◽  
Zhihao Chen ◽  
Jinkyung Lee ◽  
Seok-Woo Lee ◽  
Sang Min ◽  
...  

Osteoclasts are large multinucleated cells which are induced by the regulation of the receptor activator of nuclear factor kappa-Β ligand (RANKL), which is important in bone resorption. Excessive osteoclast differentiation can cause pathologic bone loss and destruction. Numerous studies have targeted molecules inhibiting RANKL signaling or bone resorption activity. In this study, 11 compounds from commercial libraries were examined for their effect on RANKL-induced osteoclast differentiation. Of these compounds, only 2-(3-(2-fluoro-4-methoxyphenyl)-6-oxo-1(6H)-pyridazinyl)-N-1H-indol-5-ylacetamide (2N1HIA) caused a significant decrease in multinucleated tartrate-resistant acid phosphatase (TRAP)-positive cell formation in a dose-dependent manner, without inducing cytotoxicity. The 2N1HIA compound neither affected the expression of osteoclast-specific gene markers such as TRAF6, NFATc1, RANK, OC-STAMP, and DC-STAMP, nor the RANKL signaling pathways, including p38, ERK, JNK, and NF-κB. However, 2N1HIA exhibited a significant impact on the expression levels of CD47 and cathepsin K, the early fusion marker and critical protease for bone resorption, respectively. The activity of matrix metalloprotease-9 (MMP-9) decreased due to 2N1HIA treatment. Accordingly, bone resorption activity and actin ring formation decreased in the presence of 2N1HIA. Taken together, 2N1HIA acts as an inhibitor of osteoclast differentiation by attenuating bone resorption activity and may serve as a potential candidate in preventing and/or treating osteoporosis, or other bone diseases associated with excessive bone resorption.


1994 ◽  
Vol 297 (1) ◽  
pp. 157-162 ◽  
Author(s):  
P Mayer ◽  
M Möhlig ◽  
U Seidler ◽  
H Rochlitz ◽  
M Fährmann ◽  
...  

We searched for the occurrence of a Ca2+/calmodulin-dependent protein kinase in rat gastric cell types as a likely member in the chain of gastrin- and muscarinic-receptor-mediated signal transmission. A Ca(2+)- and calmodulin-dependent phosphorylation of major 50, 60 and 100 kDa substrates was observed in parietal cell cytosol and a major 60 and 61 kDa protein doublet was found to bind 125I-calmodulin in 125I-calmodulin-gel overlays. A specific substrate of the multifunctional Ca2+/calmodulin-dependent protein kinase II, autocamtide II, was phosphorylated in a calmodulin-dependent manner. The specific inhibitor of this enzyme, KN-62, antagonized protein kinase activity. RNA extracted from gastric mucosal cells was shown to contain sequences of the gamma- and delta- but not alpha- and beta-subunits of the calmodulin-dependent kinase II, and mRNA of both subtypes was demonstrated in highly purified parietal, chief and mucous cells. A calmodulin-dependent kinase II composed of gamma- and delta-subunits is a likely mediator of Ca(2+)-dependent signal transmission in these populations of gastric cells.


1997 ◽  
Vol 326 (2) ◽  
pp. 333-337 ◽  
Author(s):  
Byung-Chul KIM ◽  
Jae-Hong KIM

Rac, one member of Rho family GTPases, stimulates c-fos serum response element (SRE)–luciferase reporter gene in Rat-2 fibroblast cells. By transient transfection analysis, we demonstrated that the activation of phospholipase A2 (PLA2) and the subsequent production of arachidonic acid (AA) are essential for Rac-induced c-fos SRE activation, implying a critical role for PLA2 in the Rac-signalling pathway to the nucleus. Either pretreatment with mepacrine, a specific inhibitor of PLA2, or co-transfection with the expression plasmid of lipocortin-1, a proposed inhibitory protein of PLA2, selectively abolished RacV12-induced SRE activation. Further, we demonstrated that subsequent metabolism of AA, a major product of Rac-activated PLA2, by lipoxygenase (LO) is essential for Rac-induced c-fos SRE activation. In agreement with the role of the PLA2–AA–LO cascade as a potential mediator of Rac signalling to the nucleus, the addition of exogenous AA stimulated c-fos SRE-luciferase activity in an LO-dependent manner. Together, our results demonstrate that ‘Rac-activated PLA2 and subsequent AA metabolism by LO’ constitute a novel and specific pathway in Rac GTPase-induced c-fos SRE activation.


Author(s):  
Lea Lemaitre ◽  
Malik Hamaidia ◽  
Jean-Gerard Descamps ◽  
Laura Do Souto Ferreira ◽  
Marie Veronique Joubert ◽  
...  

Bone-marrow mesenchymal stromal cells (MSCs) are abnormal in multiple myeloma (MM) and play a critical role by promoting growth, survival and drug resistance of MM cells. We observed higher Toll-like receptor 4 (TLR4) gene expression in MM MSCs than in MSCs from healthy donors. At the clinical level, we highlighted that TLR4 expression in MM MSCs evolves in parallel with the disease stage. Thus, we reasoned that the TLR4 axis is pivotal in MM by increasing the pro-tumor activity of MSCs. Challenging primary MSCs with TLR4 agonists increased the expression of CD54 and interleukin 6, two factors directly implicated in MM MSC-MM cell crosstalk. Then, we evaluated the therapeutic efficacy of a TLR4 antagonist combined or not with conventional treatment in vitro with MSC-MM cell co-culture and in vivo with the Vk*MYC mouse model. Selective inhibition of TLR4 specifically reduced the MM MSC ability to support growth of MM cells in an IL-6-dependent manner and delayed the development of MM in the Vk*MYC mouse model by altering the early disease phase in vivo. For the first time, we demonstrate that specific targeting of the pathological bone-marrow microenvironment via TLR4 signaling could be an innovative approach to alter MM pathology development.


Molecules ◽  
2020 ◽  
Vol 25 (20) ◽  
pp. 4855
Author(s):  
Jinkyung Lee ◽  
Sun-Hee Ahn ◽  
Zhihao Chen ◽  
Sohi Kang ◽  
Dong Kyu Choi ◽  
...  

Osteoclasts are large, multinucleated cells responsible for bone resorption and are induced in response to the regulatory activity of receptor activator of nuclear factor-kappa B ligand (RANKL). Excessive osteoclast activity causes pathological bone loss and destruction. Many studies have investigated molecules that specifically inhibit osteoclast activity by blocking RANKL signaling or bone resorption. In recent years, we screened compounds from commercial libraries to identify molecules capable of inhibiting RANKL-induced osteoclast differentiation. Consequently, we reported some compounds that are effective at attenuating osteoclast activity. In this study, we found that N-[2-(4-acetyl-1-piperazinyl)phenyl]-2-(3-methylphenoxy)acetamide (NAPMA) significantly inhibited the formation of multinucleated tartrate-resistant acid phosphatase (TRAP)-positive cells from bone marrow-derived macrophages in a dose-dependent manner, without cytotoxic effects. NAPMA downregulated the expression of osteoclast-specific markers, such as c-Fos, NFATc1, DC-STAMP, cathepsin K, and MMP-9, at the transcript and protein levels. Accordingly, bone resorption and actin ring formation were decreased in response to NAPMA treatment. Furthermore, we demonstrated the protective effect of NAPMA against ovariectomy-induced bone loss using micro-CT and histological analysis. Collectively, the results showed that NAPMA inhibited osteoclast differentiation and attenuated bone resorption. It is thus a potential drug candidate for the treatment of osteoporosis and other bone diseases associated with excessive bone resorption.


2021 ◽  
Vol 7 (17) ◽  
pp. eabd3684
Author(s):  
Benjamin W. Ewanchuk ◽  
Corey R. Arnold ◽  
Dale R. Balce ◽  
Priyatha Premnath ◽  
Tanis L. Orsetti ◽  
...  

The extracellular bone resorbing lacuna of the osteoclast shares many characteristics with the degradative lysosome of antigen-presenting cells. γ-Interferon–inducible lysosomal thiol reductase (GILT) enhances antigen processing within lysosomes through direct reduction of antigen disulfides and maintenance of cysteine protease activity. In this study, we found the osteoclastogenic cytokine RANKL drove expression of GILT in osteoclast precursors in a STAT1-dependent manner, resulting in high levels of GILT in mature osteoclasts, which could be further augmented by γ-interferon. GILT colocalized with the collagen-degrading cysteine protease, cathepsin K, suggesting a role for GILT inside the osteoclastic resorption lacuna. GILT-deficient osteoclasts had reduced bone-resorbing capacity, resulting in impaired bone turnover and an osteopetrotic phenotype in GILT-deficient mice. We demonstrated that GILT could directly reduce the noncollagenous bone matrix protein SPARC, and additionally, enhance collagen degradation by cathepsin K. Together, this work describes a previously unidentified, non-immunological role for GILT in osteoclast-mediated bone resorption.


Sign in / Sign up

Export Citation Format

Share Document