scholarly journals Helminth secretions induce de novo T cell Foxp3 expression and regulatory function through the TGF-β pathway

2010 ◽  
Vol 207 (11) ◽  
pp. 2331-2341 ◽  
Author(s):  
John R. Grainger ◽  
Katie A. Smith ◽  
James P. Hewitson ◽  
Henry J. McSorley ◽  
Yvonne Harcus ◽  
...  

Foxp3-expressing regulatory T (T reg) cells have been implicated in parasite-driven inhibition of host immunity during chronic infection. We addressed whether parasites can directly induce T reg cells. Foxp3 expression was stimulated in naive Foxp3− T cells in mice infected with the intestinal helminth Heligmosomoides polygyrus. In vitro, parasite-secreted proteins (termed H. polygyrus excretory-secretory antigen [HES]) induced de novo Foxp3 expression in fluorescence-sorted Foxp3− splenocytes from Foxp3–green fluorescent protein reporter mice. HES-induced T reg cells suppressed both in vitro effector cell proliferation and in vivo allergic airway inflammation. HES ligated the transforming growth factor (TGF) β receptor and promoted Smad2/3 phosphorylation. Foxp3 induction by HES was lost in dominant-negative TGF-βRII cells and was abolished by the TGF-β signaling inhibitor SB431542. This inhibitor also reduced worm burdens in H. polygyrus–infected mice. HES induced IL-17 in the presence of IL-6 but did not promote Th1 or Th2 development under any conditions. Importantly, antibody to mammalian TGF-β did not recognize HES, whereas antisera that inhibited HES did not affect TGF-β. Foxp3 was also induced by secreted products of Teladorsagia circumcincta, a related nematode which is widespread in ruminant animals. We have therefore identified a novel pathway through which helminth parasites may stimulate T reg cells, which is likely to be a key part of the parasite’s immunological relationship with the host.

1999 ◽  
Vol 277 (6) ◽  
pp. C1202-C1209 ◽  
Author(s):  
Robert S. Haworth ◽  
James Sinnett-Smith ◽  
Enrique Rozengurt ◽  
Metin Avkiran

The regulation of plasma membrane Na+/H+exchanger (NHE) activity by protein kinase D (PKD), a novel protein kinase C- and phorbol ester-regulated kinase, was investigated. To determine the effect of PKD on NHE activity in vivo, intracellular pH (pHi) measurements were made in COS-7 cells by microepifluorescence using the pH indicator cSNARF-1. Cells were transfected with empty vector (control), wild-type PKD, or its kinase-deficient mutant PKD-K618M, together with green fluorescent protein (GFP). NHE activity, as reflected by the rate of acid efflux ( J H), was determined in single GFP-positive cells following intracellular acidification. Overexpression of wild-type PKD had no significant effect on J H(3.48 ± 0.25 vs. 3.78 ± 0.24 mM/min in control at pHi 7.0). In contrast, overexpression of PKD-K618M increased J H (5.31 ± 0.57 mM/min at pHi 7.0; P < 0.05 vs. control). Transfection with these constructs produced similar effects also in A-10 cells, indicating that native PKD may have an inhibitory effect on NHE in both cell types, which is relieved by a dominant-negative action of PKD-K618M. Exposure of COS-7 cells to phorbol ester significantly increased J H in control cells but failed to do so in cells overexpressing either wild-type PKD (due to inhibition by the overexpressed PKD) or PKD-K618M (because basal J Hwas already near maximal). A fusion protein containing the cytosolic regulatory domain (amino acids 637–815) of NHE1 (the ubiquitous NHE isoform) was phosphorylated in vitro by wild-type PKD, but with low stoichiometry. These data suggest that PKD inhibits NHE activity, probably through an indirect mechanism, and represents a novel pathway in the regulation of the exchanger.


2009 ◽  
Vol 206 (12) ◽  
pp. 2701-2715 ◽  
Author(s):  
Sven Klunker ◽  
Mark M.W. Chong ◽  
Pierre-Yves Mantel ◽  
Oscar Palomares ◽  
Claudio Bassin ◽  
...  

Forkhead box P3 (FOXP3)+CD4+CD25+ inducible regulatory T (iT reg) cells play an important role in immune tolerance and homeostasis. In this study, we show that the transforming growth factor-β (TGF-β) induces the expression of the Runt-related transcription factors RUNX1 and RUNX3 in CD4+ T cells. This induction seems to be a prerequisite for the binding of RUNX1 and RUNX3 to three putative RUNX binding sites in the FOXP3 promoter. Inactivation of the gene encoding RUNX cofactor core-binding factor-β (CBFβ) in mice and small interfering RNA (siRNA)-mediated suppression of RUNX1 and RUNX3 in human T cells resulted in reduced expression of Foxp3. The in vivo conversion of naive CD4+ T cells into Foxp3+ iT reg cells was significantly decreased in adoptively transferred CbfbF/F CD4-cre naive T cells into Rag2−/− mice. Both RUNX1 and RUNX3 siRNA silenced human T reg cells and CbfbF/F CD4-cre mouse T reg cells showed diminished suppressive function in vitro. Circulating human CD4+ CD25high CD127− T reg cells significantly expressed higher levels of RUNX3, FOXP3, and TGF-β mRNA compared with CD4+CD25− cells. Furthermore, FOXP3 and RUNX3 were colocalized in human tonsil T reg cells. These data demonstrate Runx transcription factors as a molecular link in TGF-β–induced Foxp3 expression in iT reg cell differentiation and function.


2018 ◽  
Author(s):  
Virginie Courchet ◽  
Amanda J Roberts ◽  
Peggy Del Carmine ◽  
Tommy L. Lewis ◽  
Franck Polleux ◽  
...  

SUMMARYRecently, numerous rare de novo mutations have been identified in children diagnosed with autism spectrum disorders (ASD). However, despite the predicted loss-of-function nature of some of these de novo mutations, the affected individuals are heterozygous carriers, which would suggest that most of these candidate genes are haploinsufficient and/or that these mutations lead to expression of dominant-negative forms of the protein. Here, we tested this hypothesis with the gene Nuak1, recently identified as a candidate ASD gene and that we previously identified for its role in the development of cortical connectivity. We report that Nuak1 is happloinsufficient in mice in regard to its function in cortical axon branching in vitro and in vivo. Nuak1+/− mice show a combination of abnormal behavioral traits ranging from defective memory consolidation in a spatial learning task, defects in social novelty (but not social preference) and abnormal sensorimotor gating and prepulse inhibition of the startle response. Overall, our results demonstrate that Nuak1 haploinsufficiency leads to defects in the development of cortical connectivity and a complex array of behavorial deficits compatible with ASD, intellectual disability and schizophrenia.


2019 ◽  
Vol 39 (9) ◽  
Author(s):  
Jochen Michael Rudolph ◽  
Karina Guttek ◽  
Gabriele Weitz ◽  
Clara Antonia Meinke ◽  
Stefanie Kliche ◽  
...  

ABSTRACT The adhesion and degranulation-promoting adapter protein (ADAP) is expressed in T cells, NK cells, myeloid cells, and platelets. The involvement of ADAP in the regulation of receptor-mediated inside-out signaling leading to integrin activation is well characterized, especially in T cells and in platelets. Due to the fact that animal studies using conventional knockout mice are limited by the overlapping effects of the different ADAP-expressing cells, we generated conditional ADAP knockout mice (ADAPfl/fl PF4-Cretg) (PF4, platelet factor 4). We observed that loss of ADAP restricted to the megakaryocytic lineage has no impact on other hematopoietic cells even under stimulation conditions. ADAPfl/fl PF4-Cretg mice showed thrombocytopenia in combination with reduced plasma levels of PF4 and transforming growth factor β1 (TGF-β1). In vitro, platelets from these mice revealed reduced P-selectin expression, lower levels of TGF-β1 release, diminished integrin αIIbβ3 activation, and decreased fibrinogen binding after stimulation with podoplanin, the ligand of C-type lectin-like receptor 2 (CLEC-2). Furthermore, loss of ADAP was associated with impaired CLEC-2-mediated activation of phospholipase Cγ2 (PLCγ2) and extracellular signal-regulated kinase 1/2 (ERK1/2). Induction of experimental autoimmune encephalomyelitis (EAE) in mice lacking ADAP expression in platelets caused a more severe disease. In vivo administration of TGF-β1 early after T cell transfer reduced EAE severity in mice with loss of ADAP restricted to platelets. Our results reveal a regulatory function of ADAP in platelets in vitro and during autoimmune disease EAE in vivo.


1998 ◽  
Vol 142 (3) ◽  
pp. 873-881 ◽  
Author(s):  
Guido Serini ◽  
Marie-Luce Bochaton-Piallat ◽  
Patricia Ropraz ◽  
Antoine Geinoz ◽  
Laura Borsi ◽  
...  

Transforming growth factor-β1 (TGFβ1), a major promoter of myofibroblast differentiation, induces α-smooth muscle (sn) actin, modulates the expression of adhesive receptors, and enhances the synthesis of extracellular matrix (ECM) molecules including ED-A fibronectin (FN), an isoform de novo expressed during wound healing and fibrotic changes. We report here that ED-A FN deposition precedes α-SM actin expression by fibroblasts during granulation tissue evolution in vivo and after TGFβ1 stimulation in vitro. Moreover, there is a correlation between in vitro expression of α-SM actin and ED-A FN in different fibroblastic populations. Seeding fibroblasts on ED-A FN does not elicit per se α-SM actin expression; however, incubation of fibroblasts with the anti-ED-A monoclonal antibody IST-9 specifically blocks the TGFβ1-triggered enhancement of α-SM actin and collagen type I, but not that of plasminogen activator inhibitor-1 mRNA. Interestingly, the same inhibiting action is exerted by the soluble recombinant domain ED-A, but neither of these inhibitory agents alter FN matrix assembly. Our findings indicate that ED-A–containing polymerized FN is necessary for the induction of the myofibroblastic phenotype by TGFβ1 and identify a hitherto unknown mechanism of cytokine-determined gene stimulation based on the generation of an ECM-derived permissive outside in signaling, under the control of the cytokine itself.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Jacobo López-Abente ◽  
Marta Martínez-Bonet ◽  
Esther Bernaldo-de-Quirós ◽  
Manuela Camino ◽  
Nuria Gil ◽  
...  

AbstractCD25, the alpha chain of the IL-2 receptor, is expressed on activated effector T cells that mediate immune graft damage. Induction immunosuppression is commonly used in solid organ transplantation and can include antibodies blocking CD25. However, regulatory T cells (Tregs) also rely on CD25 for their proliferation, survival, and regulatory function. Therefore, CD25-blockade may compromise Treg protective role against rejection. We analysed in vitro the effect of basiliximab (BXM) on the viability, phenotype, proliferation and cytokine production of Treg cells. We also evaluated in vivo the effect of BXM on Treg in thymectomized heart transplant children receiving BXM in comparison to patients not receiving induction therapy. Our results show that BXM reduces Treg counts and function in vitro by affecting their proliferation, Foxp3 expression, and IL-10 secretion capacity. In pediatric heart-transplant patients, we observed decreased Treg counts and a diminished Treg/Teff ratio in BXM-treated patients up to 6-month after treatment, recovering baseline values at the end of the 12-month follow up period. These results reveal that the use of BXM could produce detrimental effects on Tregs, and support the evidence suggesting that BXM induction could impair the protective role of Tregs in the period of highest incidence of acute graft rejection.


2021 ◽  
Vol 12 ◽  
Author(s):  
Alexandra Ehrens ◽  
Nikolas Rüdiger ◽  
Lennart Heepmann ◽  
Lara Linnemann ◽  
Wiebke Hartmann ◽  
...  

Parasitic nematodes such as hookworms actively penetrate the skin of their hosts, encountering skin-resident innate immune cells that represent the host´s first line of defense. Here we use Strongyloides ratti as a model for an intestinal helminth parasite with tissue migrating stages. We show that interception and killing of migrating larvae in mice during a 1st infection occurred predominantly in skin and muscle tissue before larvae migrated via lung and head tissue to the intestine. Inhibition of larval migration was even more efficient in immune mice during a 2nd infection where larvae barely left the site of entry i.e. the foot. Using cell-deficient mice we show that interception in the tissue was predominantly mediated by neutrophils and eosinophils while basophils and mast cells were dispensable in vivo. Likewise, neutrophils and eosinophils inhibited S. ratti L3 motility in vitro in the context of ETosis. Thereby eosinophils were strictly dependent on the presence of anti-S. ratti antibodies while neutrophils inhibited L3 motility as such. Also, MPO and MMP-9 were released by neutrophils in response to L3 alone, but immune plasma further stimulated MPO release in an antibody-dependent manner. In summary, our findings highlight the central role of the skin as first line of defense against helminth parasites in both, innate and adaptive immunity.


1999 ◽  
Vol 340 (2) ◽  
pp. 359-363 ◽  
Author(s):  
Kanamarlapudi VENKATESWARLU ◽  
Paru B. OATEY ◽  
Jeremy M. TAVARÉ ◽  
Trevor R. JACKSON ◽  
Peter J. CULLEN

Centaurin-α is a 46 kDa in vitro binding protein for the lipid second messenger PtdIns(3,4,5)P3. In this report we have addressed whether centaurin-α1, a human homologue of centaurin-α, binds PtdIns(3,4,5)P3in vivo and furthermore, identified a potential physiological function for centaurin-α1. Using confocal microscopy of live PC12 cells, transiently transfected with a chimera of green fluorescent protein (GFP) fused to the N-terminus of centaurin-α1 (GFP-centaurin-α1), we demonstrated the rapid plasma membrane recruitment of cytosolic GFP-centaurin-α1 following stimulation with either nerve growth factor or epidermal growth factor. This recruitment was dependent on the centaurin-α1 pleckstrin homology domains and was blocked by the PtdIns(4,5)P2 3-kinase (PI 3-kinase) inhibitors wortmannin (100 nM) and LY294002 (50 μM), and also by co-expression with a dominant negative p85. Functionally, we demonstrated that centaurin-α1 could complement a yeast strain deficient in the ADP-ribosylation factor (ARF) GTPase-activating protein Gcs1; a complementation that was blocked by mutagenesis of conserved cysteine residues within the ARF GTPase-activating protein analogous domain of centaurin-α1. Taken together, our data demonstrated that centaurin-α1 could potentially function as an ARF GTPase-activating protein that, on agonist stimulation, was recruited to the plasma membrane possibly through an ability to interact with PtdIns(3,4,5)P3.


Blood ◽  
2013 ◽  
Vol 122 (21) ◽  
pp. 3812-3812
Author(s):  
David A. Russler-Germain ◽  
David H Spencer ◽  
Margaret A. Young ◽  
Tamara Lamprecht ◽  
Chris Miller ◽  
...  

Abstract Mutations in DNMT3A (encoding one of two mammalian de novo DNA methyltransferases) are found in >30% of normal karyotype AML cases and correlate with poor clinical outcomes. Most DNMT3A mutations occur at position R882 within the catalytic domain (most commonly R882H) and are virtually always heterozygous. This over-representation suggests that mutations at R882 may result in gain-of-function or dominant-negative activity that contributes to leukemogenesis. However, how DNA methylation might be altered in DNMT3A-mutant cases of AML remains unclear, and no published study to date has addressed the effects of mixing wild-type (WT) and R882H DNMT3A. Importantly, mouse HSPCs deficient in Dnmt3a dramatically expand over time and have a concurrent defect in differentiation (Challen, GA et al. Nat Genet, 2011). Mice haploinsufficient for Dnmt3a, on the other hand, do not have a measurable defect in hematopoiesis. Collectively, these data suggest that the heterozygous R882 mutations probably cause more than a simple loss-of-function phenotype. We purified full-length, human WT and R882H DNMT3A using a mammalian tissue culture system to produce recombinant proteins for biochemical modeling of the de novo methylation potential of a DNMT3A-mutant AML cell. rhR882H DNMT3A exhibits roughly 10-20% of the de novo DNA methyltransferase activity of rhWT DNMT3A, similar to observations by other groups. We added increasing amounts of R882H DNMT3A to a fixed amount of WT DNMT3A and observed a linear increase in the net enzymatic activity, reflecting the summed activity of the two forms of DNMT3A in these 4-hour in vitro reactions. In contrast, 12-hour in vitro DNA methylation assays with mixed WT and R882H DNMT3A demonstrated net methylation less than the predicted summed activity of the two enzymes, suggesting that a dominant-negative effect of R882H DNMT3A may occur with a long equilibration time. To better simulate an AML cell with a heterozygous R882H mutation, we co-transfected HEK293T cells with equal amounts of poly-His-tagged WT and R882H DNMT3A expression vectors. Subsequently co-purified (i.e. in vivo-mixed) WT and R882H DNMT3A exhibited a striking reduction in methyltransferase activity, with total activity similar to R882H DNMT3A alone (Figure 1A). TSQ mass spectrometry allowed us to verify the presence and quantify the relative concentration of WT and R882H DNMT3A in our co-purified samples. We exploited a novel tryptic cleavage site in DNMT3A produced by the R882H mutation to generate standard concentration curves using recombinant peptides distinguishing the two protein forms. Our co-purified enzyme preparations had WT:R882H ratios ranging from 0.79 to 1.60; all demonstrated the dominant-negative effect of R882H. DNMT3A is a processive enzyme, catalyzing multiple methyl-group transfers before dissociating from target DNA. This is dependent on the ability of WT DNMT3A to form homo-oligomers (tetramers and larger), which was recently shown to be disrupted by the R882H mutation using the catalytic domain of DNMT3A produced in E.coli (Holz-Schietinger, C et al. JBC, 2012). We therefore postulated that the dominant-negative effect of R882H may be due to the disruption of WT DNMT3A oligomerization. Using a Superose 6 size exclusion column, we confirmed the tetramerization defect of R882H DNMT3A relative to WT DNMT3A. Notably, in vivo-mixed (co-purified) WT and R882H DNMT3A complexes exhibited a pattern of oligomerization identical to R882H DNMT3A alone. However, WT and R882H DNMT3A mixed in vitro exhibited a distribution of oligomers corresponding to the expected average of the WT and R882H curves (Figure 1B). These data demonstrate that production of equal amounts of WT and R882H DNMT3A within the same cell provides an environment where R882H DNMT3A can exert a potent dominant-negative effect on WT DNMT3A. Furthermore, our data suggest that this effect is associated with diminished formation of tetramers when WT and R882H DNMT3A are complexed together. Thus, the R882H mutation has two distinct consequences that affect DNMT3A activity in AML cells: 1) it severely reduces its own de novo methyltransferase activity, and 2) it disrupts the ability of WT DNMT3A to form functional tetramers. These two effects severely reduce total DNMT3A activity in AML cells, and may explain why this mutation is virtually always heterozygous in AML samples, since homozygosity would not further reduce DNMT3A activity. Disclosures: No relevant conflicts of interest to declare.


Sign in / Sign up

Export Citation Format

Share Document