Diffuse near-infrared imaging of tissue with picosecond time resolution

2018 ◽  
Vol 63 (5) ◽  
pp. 511-518 ◽  
Author(s):  
Dirk Grosenick ◽  
Heidrun Wabnitz ◽  
Rainer Macdonald

Abstract Optical imaging of biological tissue in vivo at multiple wavelengths in the near-infrared (NIR) spectral range can be achieved with picosecond time resolution at high sensitivity by time-correlated single photon counting. Measuring and analyzing the distribution of times of flight of photons randomly propagated through the tissue has been applied for diffuse optical imaging and spectroscopy, e.g. of human breast tissue and of the brain. In this article, we review the main features and the potential of NIR multispectral imaging with picosecond time resolution and illustrate them by exemplar applications in these fields. In particular, we discuss the experimental methods developed at the Physikalisch-Technische Bundesanstalt (PTB) to record optical mammograms and to quantify the absorption and scattering properties from which hemoglobin concentration and oxygen saturation of healthy and diseased breast tissue have been derived by combining picosecond time-domain and spectral information. Furthermore, optical images of functional brain activation were obtained by a non-contact scanning device exploiting the null source-detector separation approach which takes advantage of the picosecond time resolution as well. The recorded time traces of changes in the oxy- and deoxyhemoglobin concentrations during a motor stimulation investigation show a localized response from the brain.

2010 ◽  
Vol 13 (2) ◽  
pp. 275-283 ◽  
Author(s):  
Petra Hülper ◽  
Christian Dullin ◽  
Wilfried Kugler ◽  
Max Lakomek ◽  
Bernhard Erdlenbruch

2019 ◽  
Vol 9 (11) ◽  
pp. 2366 ◽  
Author(s):  
Laura Di Sieno ◽  
Alberto Dalla Mora ◽  
Alessandro Torricelli ◽  
Lorenzo Spinelli ◽  
Rebecca Re ◽  
...  

In this paper, a time-domain fast gated near-infrared spectroscopy system is presented. The system is composed of a fiber-based laser providing two pulsed sources and two fast gated detectors. The system is characterized on phantoms and was tested in vivo, showing how the gating approach can improve the contrast and contrast-to-noise-ratio for detection of absorption perturbation inside a diffusive medium, regardless of source-detector separation.


2014 ◽  
Vol 10 (1) ◽  
pp. 187-195 ◽  
Author(s):  
Yoichi Shimizu ◽  
Takashi Temma ◽  
Isao Hara ◽  
Akira Makino ◽  
Ryo Yamahara ◽  
...  

Endocrinology ◽  
2012 ◽  
Vol 153 (6) ◽  
pp. 2907-2918 ◽  
Author(s):  
Katrin Büther ◽  
Matthijs G. Compeer ◽  
Jo G. R. De Mey ◽  
Otmar Schober ◽  
Michael Schäfers ◽  
...  

Endothelin (ET) receptor dysregulation has been described in a number of pathophysiological processes, including cardiovascular disorders, renal failure, and cancer. The aim of this study was to evaluate the expression of the ET-A receptor (ETAR) in murine models of thyroid carcinoma using optical imaging methods. A recently developed near-infrared fluorescent tracer was first assessed in isolated artery preparations for its functional performance in comparison with known ETAR antagonists BQ123 and PD156707. Before evaluation of the tracer in vivo, different thyroid carcinoma cell lines were characterized with respect to their ET receptor expression by RT-PCR and autoradiography. In vivo, sc and orthotopic papillary thyroid tumor xenografts were clearly visualized by fluorescence reflectance imaging and fluorescence-mediated tomography up to 48 h after injection of the tracer. Binding specificity of the probe was demonstrated by predosing with PD156707 as a competing inhibitor. In conclusion, optical imaging with a fluorescent ETAR tracer allows the noninvasive imaging of tumor-associated ETAR expression in vivo. In the future, this technique may help surgeons to evaluate lesion dimensions in intraoperative settings (e.g. thyroidectomy).


2015 ◽  
Vol 27 (2) ◽  
pp. 404-413 ◽  
Author(s):  
Kazuhide Sato ◽  
Alexander P. Gorka ◽  
Tadanobu Nagaya ◽  
Megan S. Michie ◽  
Roger R. Nani ◽  
...  

2011 ◽  
Vol 04 (02) ◽  
pp. 199-208
Author(s):  
ZHIQIU LI ◽  
SHUDONG JIANG ◽  
VENKATARAMANAN KRISHNASWAMY ◽  
SCOTT C. DAVIS ◽  
SUBHADRA SRINIVASAN ◽  
...  

A near-infrared (NIR) tomography system with spectrally-encoded sources in two wavelength bands was built to quantify the temporal oxyhemoglobin and deoxyhemoglobin contrast in breast tissue at a 20 Hz bandwidth. The system was integrated into a 3 T magnetic resonance (MR) imaging system through a customized breast coil interface for simultaneous optical and MRI acquisition. In this configuration, the MR images provide breast tissue structural information for NIR spectroscopy of adipose and fibro-glandular tissue in breast. Spectral characterization performance of the NIR system was verified through dynamic phantom experiments. Normal human subjects were imaged with finger pulse oximeter (PO) plethysmogram synchronized to the NIR system to provide a frequency-locked reference. Both the raw data from the NIR system and the recovered absorption coefficients of the breast at two wavelengths showed the same frequency of about 1.3 Hz as the PO output. The frequency lock-in approach provided a practical platform for MR-localized recovery of small pulsatile variations of oxyhemoglobin and deoxyhemoglobin in the breast, which are related to the heartbeat and vascular resistance of the tissue.


2018 ◽  
Author(s):  
Wei Chen ◽  
ChiAn Cheng ◽  
Emily Cosco ◽  
Shyam Ramakrishnan ◽  
Jakob Lingg ◽  
...  

Tissue is translucent to shortwave infrared (SWIR) light, rendering optical imaging superior in this region. However, the widespread use of optical SWIR imaging has been limited, in part, by the lack of bright, biocompatible contrast agents that absorb and emit light above 1000 nm. J-aggregation offers a means to transform stable, near-infrared (NIR) fluorophores into red-shifted SWIR contrast agents. Here we demonstrate that hollow mesoporous silica nanoparticles (HMSNs) can template the J-aggregation of NIR fluorophore IR-140 to result in nanomaterials that absorb and emit SWIR light. The J-aggregates inside PEGylated HMSNs are stable for multiple weeks in buffer and enable high resolution imaging <i>in vivo</i>with 980 nm excitation.


2016 ◽  
Vol 4 (33) ◽  
pp. 5560-5566 ◽  
Author(s):  
Lesan Yan ◽  
Huiquan Wang ◽  
Anqi Zhang ◽  
Calvin Zhao ◽  
Yongping Chen ◽  
...  

The IR780@NPs exhibited excellent characteristics for in vivo imaging with a long circulation time and high retention in tumor and sentinel lymph node.


2020 ◽  
Vol 79 (Suppl 1) ◽  
pp. 212-212
Author(s):  
S. Khatri ◽  
J. Hansen ◽  
M. H. Clausen ◽  
T. W. Kragstrup ◽  
S. C. Hung ◽  
...  

Background:Rheumatoid arthritis (RA) is an immune mediated inflammatory disease with autoimmune features, including antibodies to citrullinated proteins and peptides (ACPAs). Several in vitro studies have suggested a pathogenic role of ACPAs in RA. However, in vivo proof of this concept has been hampered by the lack of therapeutic strategies to reduce or deplete ACPA in serum and synovial fluid. Previously, we constructed a chitosan-hyaluronic acid nanoparticle formulation with the ability to use neutrophil recruitment as a delivery mechanism to inflamed joints. Specifically, nanoparticles got phagocytosed and then released to synovial fluid upon death of the short-lived neutrophilsObjectives:We hypothesized that reducing ACPA levels would have a therapeutic effect by blocking cytokine production. In this study, we prepared and tested a series of therapeutic nanoparticles for specific targeting of ACPA in synovial fluid.Methods:Nanoparticles were prepared by the microdroplet method and then decorated with synthetic cyclic citrullinated peptide aptamer PEP2, PEG/hexanoic acid and fluorophore (Cy5.5). Nanoparticles were characterized by dynamic light scattering (DLS), scanning electron microscopy (SEM) and high-performance liquid chromatography (HPLC). Nanoparticles were then used in a series of in vitro assays, including cell uptake with flow cytometry (FACS) detection, and in vivo studies including disease activity scores, cytokine measurements and near-infrared imaging.Results:We screened a series of citrullinated peptide epitopes and identified a fibrinogen-derived 21-amino-acid-long citrullinated peptide showing high selectivity toward autoantibodies in RA samples. We incorporated this aptamer in the chitosan-hyaluronic acid nanoparticle formulation previously described. Average nanoparticle size was 230 nm ± 10 nm by DLS and SEM; z potential was -0.0012. Purity by HPLC was over 95%. Attachment efficiency of the aptamer was 92% by HPLC. FACS study showed selective uptake of Cy5.5 labelled aptamer-nanoparticle conjugates by neutrophils in the concentration range 0.5-4 nM. Similar to previous studies,1there was no apparent immunogenicity for this nanoparticle formulation measured by cytokine secretion from human peripheral blood leukocytes. In vivo, over 50% reduction of disease activity was achieved in three weeks treatment using as little as 1 nM drug candidate (dosed every 48 hours) in the collagen-induced (CIA) mouse model of RA (N=30; p<0.001 for treated vs placebo). Same was observed in the serum transfer model (N=10). The aptamer-nanoparticle conjugate significantly reduced IL-6 and TNFα levels in the mouse sera (p<0.01). The effects were not inferior to tocilizumab treated controls (N=30). To confirm mode of action, we applied Cy5.5-labelled aptamer-nanoparticles in the collagen-induced mouse model (N=10) and analyzed the resulting uptake by near-infrared imaging. We confirmed over 6-fold higher signal accumulation in inflamed vs healthy joints (p<0.01), which strongly supports the fact that the aptamer is highly specific to the inflammatory process.Conclusion:Overall, we have designed a first-in-class therapeutic nanoparticle drug for specific targeting of anti-citrullinated protein antibodies. The marked effect of this nanoparticle observed in vivo holds promise for targeting ACPAs as a therapeutic option in RA.References:[1]Khatri S, Hansen J, Mendes AC, Chronakis IS, Hung S-C, Mellins ED, Astakhova K. Bioconjug Chem. 2019 Oct 16;30(10):2584–259Disclosure of Interests:Sangita Khatri: None declared, Jonas Hansen: None declared, Mads Hartvig Clausen Shareholder of: iBio Tech ApS, Tue Wenzel Kragstrup Shareholder of: iBio Tech ApS, Consultant of: Bristol-Myers Squibb, Speakers bureau: TWK has engaged in educational activities talking about immunology in rheumatic diseases receiving speaking fees from Pfizer, Bristol-Myers Squibb, Eli Lilly, Novartis, and UCB., Shu-Chen Hung: None declared, Elisabeth Mellins: None declared, Kira Astakhova: None declared


Sign in / Sign up

Export Citation Format

Share Document