MR-GUIDED PULSE OXIMETRY IMAGING OF BREAST IN VIVO

2011 ◽  
Vol 04 (02) ◽  
pp. 199-208
Author(s):  
ZHIQIU LI ◽  
SHUDONG JIANG ◽  
VENKATARAMANAN KRISHNASWAMY ◽  
SCOTT C. DAVIS ◽  
SUBHADRA SRINIVASAN ◽  
...  

A near-infrared (NIR) tomography system with spectrally-encoded sources in two wavelength bands was built to quantify the temporal oxyhemoglobin and deoxyhemoglobin contrast in breast tissue at a 20 Hz bandwidth. The system was integrated into a 3 T magnetic resonance (MR) imaging system through a customized breast coil interface for simultaneous optical and MRI acquisition. In this configuration, the MR images provide breast tissue structural information for NIR spectroscopy of adipose and fibro-glandular tissue in breast. Spectral characterization performance of the NIR system was verified through dynamic phantom experiments. Normal human subjects were imaged with finger pulse oximeter (PO) plethysmogram synchronized to the NIR system to provide a frequency-locked reference. Both the raw data from the NIR system and the recovered absorption coefficients of the breast at two wavelengths showed the same frequency of about 1.3 Hz as the PO output. The frequency lock-in approach provided a practical platform for MR-localized recovery of small pulsatile variations of oxyhemoglobin and deoxyhemoglobin in the breast, which are related to the heartbeat and vascular resistance of the tissue.

2016 ◽  
Vol 09 (02) ◽  
pp. 1650007 ◽  
Author(s):  
Majid Shokoufi ◽  
Farid Golnaraghi

Diffuse Optical Spectroscopy (DOS) is a promising non-invasive and non-ionizing technique for breast anomaly detection. In this study, we have developed a new handheld DOS probe to measure optical properties of breast tissue. In the proposed probe, the breast tissue is illuminated with four near infrared (NIR) wavelengths light emitting diodes (LED), which are encapsulated in a package (eLEDs), and two PIN photodiodes measure the intensity of the scattered photons at two different locations. The proposed technique of using eLEDs is introduced, in order to have a multi-wavelength pointed-beam illumination source instead of using the laser-coupled fiber-optic technique, which increases the complexity, size, and cost of the probe. Despite the fact that the proposed technique miniaturizes the probe and reduces the complexity of the DOS, the study proves that it is accurate and reliable in measuring optical properties of the tissue. The measurements are performed at the rate of 10[Formula: see text]Hz which is suitable for dynamic measurement of biological activity, in-vivo. The multi-spectral evaluation algorithm is used to reconstruct four main absorber concentrations in the breast including oxy-hemoglobin (cHb), deoxy-hemoglobin (cHbO2), water (cH2O), fat (cFat), and average scattering coefficient of the medium, as well as concentration changes in Hb ([Formula: see text]cHb) and HbO2 ([Formula: see text]cHbO2). Although the probe is designed for breast cancer diagnosis, it can be used in a wide range of applications for both static and dynamic measurements such as functional brain imaging. A series of phantoms, comprised of Delrin[Formula: see text], Intralipid[Formula: see text], PierceTM and Black ink, are used to verify performance of the device. The probe will be tested on human subjects, in-vivo, in the next phase.


2018 ◽  
Vol 8 (12) ◽  
pp. 2602 ◽  
Author(s):  
Laurence Schimleck ◽  
Joseph Dahlen ◽  
Seung-Chul Yoon ◽  
Kurt Lawrence ◽  
Paul Jones

Near-infrared (NIR) spectroscopy and NIR hyperspectral imaging (NIR-HSI) were compared for the rapid estimation of physical and mechanical properties of No. 2 visual grade 2 × 4 (38.1 mm by 88.9 mm) Douglas-fir structural lumber. In total, 390 lumber samples were acquired from four mills in North America and destructively tested through bending. From each piece of lumber, a 25-mm length block was cut to collect diffuse reflectance NIR spectra and hyperspectral images. Calibrations for the specific gravity (SG) of both the lumber (SGlumber) and 25-mm block (SGblock) and the lumber modulus of elasticity (MOE) and modulus of rupture (MOR) were created using partial least squares (PLS) regression and their performance checked with a prediction set. The strongest calibrations were based on NIR spectra; however, the NIR-HSI data provided stronger predictions for all properties. In terms of fit statistics, SGblock gave the best results, followed by SGlumber, MOE, and MOR. The NIR-HSI SGlumber, MOE, and MOR calibrations were used to predict these properties for each pixel across the transverse surface of the scanned samples, allowing SG, MOE, and MOR variation within and among rings to be observed.


Cosmetics ◽  
2018 ◽  
Vol 5 (4) ◽  
pp. 66 ◽  
Author(s):  
Paola Perugini ◽  
Mariella Bleve ◽  
Fabiola Cortinovis ◽  
Antonio Colpani

Bacterial cellulose (BC) has become of great interest in recent years, as a delivery system in several areas of application, including food, drugs, and cosmetics, thanks to its exclusive advantages, such as high biocompatibility, water holding capacity, and good gas permeability. The novel approach of the authors has led to a protocol for checking the quality and safety of bacterial cellulose matrices in the manufacture of cosmetic masks. Two non-destructive techniques, near-infrared spectroscopy (NIR) and multiple light scattering (MLS), were used to verify different parameters affecting the quality of BC sheets, allowing cellulose masks to be checked over time. NIR spectroscopy allowed for discovering changes in the water content, depending on filling/packaging procedures, like flat-folding. Multiple light scattering was used to ascertain the stability of solutions in contact with masks. From a clinical standpoint, the cutaneous tolerability of biocellulose masks, and their effect on skin parameters, were evaluated through some specific “in vivo” tests. Also, a safety evaluation during application was conducted through different studies: a short-term one after single application, and a long-term one upon continued use.


1990 ◽  
Vol 69 (3) ◽  
pp. 907-913 ◽  
Author(s):  
N. B. Hampson ◽  
E. M. Camporesi ◽  
B. W. Stolp ◽  
R. E. Moon ◽  
J. E. Shook ◽  
...  

The effects of mild hypoxia on brain oxyhemoglobin, cytochrome a,a3 redox status, and cerebral blood volume were studied using near-infrared spectroscopy in eight healthy volunteers. Incremental hypoxia reaching 70% arterial O2 saturation was produced in normocapnia [end-tidal PCO2 (PETCO2) 36.9 +/- 2.6 to 34.9 +/- 3.4 Torr] or hypocapnia (PETCO2 32.8 +/- 0.6 to 23.7 +/- 0.6 Torr) by an 8-min rebreathing technique and regulation of inspired CO2. Normocapnic hypoxia was characterized by progressive reductions in arterial PO2 (PaO2, 89.1 +/- 3.5 to 34.1 +/- 0.1 Torr) with stable PETCO2, arterial PCO2 (PaCO2), and arterial pH and resulted in increases in heart rate (35%) systolic blood pressure (14%), and minute ventilation (5-fold). Hypocapnic hypoxia resulted in progressively decreasing PaO2 (100.2 +/- 3.6 to 28.9 +/- 0.1 Torr), with progressive reduction in PaCO2 (39.0 +/- 1.6 to 27.3 +/- 1.9 Torr), and an increase in arterial pH (7.41 +/- 0.02 to 7.53 +/- 0.03), heart rate (61%), and ventilation (3-fold). In the brain, hypoxia resulted in a steady decline of cerebral oxyhemoglobin content and a decrease in oxidized cytochrome a,a3. Significantly greater loss of oxidized cytochrome a,a3 occurred for a given decrease in oxyhemoglobin during hypocapnic hypoxia relative to normocapnic hypoxia. Total blood volume response during hypoxia also was significantly attenuated by hypocapnia, because the increase in volume was only half that of normocapnic subjects. We conclude that cytochrome a,a3 oxidation level in vivo decreases at mild levels of hypoxia. PaCO is an important determinant of brain oxygenation, because it modulates ventilatory, cardiovascular, and cerebral O2 delivery responses to hypoxia.


2012 ◽  
Vol 107 (10) ◽  
pp. 2853-2865 ◽  
Author(s):  
Ji-Wei He ◽  
Fenghua Tian ◽  
Hanli Liu ◽  
Yuan Bo Peng

While near-infrared (NIR) spectroscopy has been increasingly used to detect stimulated brain activities with an advantage of dissociating regional oxy- and deoxyhemoglobin concentrations simultaneously, it has not been utilized much in pain research. Here, we investigated and demonstrated the feasibility of using this technique to obtain whole brain hemodynamics in rats and speculated on the functional relevance of the NIR-based hemodynamic signals during pain processing. NIR signals were emitted and collected using a 26-optodes array on rat's dorsal skull surface after the removal of skin. Following the subcutaneous injection of formalin (50 μl, 3%) into a hindpaw, several isolable brain regions showed hemodynamic changes, including the anterior cingulate cortex, primary/secondary somatosensory cortexes, thalamus, and periaqueductal gray ( n = 6). Time courses of hemodynamic changes in respective regions matched with the well-documented biphasic excitatory response. Surprisingly, an atypical pattern (i.e., a decrease in oxyhemoglobin concentration with a concomitant increase in deoxyhemoglobin concentration) was seen in phase II. In a separate group of rats with innocuous brush and noxious pinch of the same area ( n = 11), results confirmed that the atypical pattern occurred more likely in the presence of nociception than nonpainful stimulation, suggesting it as a physiological substrate when the brain processes pain. In conclusion, the NIR whole brain imaging provides a useful alternative to study pain in vivo using small-animal models. Our results support the notion that neurovascular response patterns depend on stimuli, bringing attention to the interpretation of vascular-based neuroimaging data in studies of pain.


1991 ◽  
Vol 31 (2) ◽  
pp. 205 ◽  
Author(s):  
KF Smith ◽  
PC Flinn

Near infrared reflectance (NIR) spectroscopy is a rapid and cost-effective method for the measurement of organic constituents of agricultural products. NIR is widely used to measure feed quality around the world and is gaining acceptance in Australia. This study describes the development of an NIR calibration to measure crude protein (CP), predicted in vivo dry matter digestibility (IVDMD) and neutral detergent fibre (NDF) in temperate pasture species grown in south-western Victoria. A subset of 116 samples was selected on the basis of spectral characteristics from 461 pasture samples grown in 1987-89. Several grass and legume species were present in the population. Stepwise multiple linear regression analysis was used on the 116 samples to develop calibration equations with standard errors of 0.8,2.3 and 2.2% for CP, NDF and IVDMD, respectively. When these equations were tested on 2 independent pasture populations, a significant bias existed between NIR and reference values for 2 constituents in each population, indicating that the calibration samples did not adequately represent the new populations for these constituents. The results also showed that the H statistic alone was inadequate as an indicator of equation performance. It was confirmed that it was possible to develop a broad-based calibration to measure accurately the nutritive value of closed populations of temperate pasture species. For the resulting equations to be used for analysis of other populations, however, they must be monitored by comparing reference and NIR analyses on a small number of samples to check for the presence of bias or a significant increase in unexplained error.


2014 ◽  
Vol 306 (5) ◽  
pp. R281-R290 ◽  
Author(s):  
Tyler S. Nelson ◽  
Ryan E. Akin ◽  
Michael J. Weiler ◽  
Timothy Kassis ◽  
Jeffrey A. Kornuta ◽  
...  

The ability to quantify collecting vessel function in a minimally invasive fashion is crucial to the study of lymphatic physiology and the role of lymphatic pump function in disease progression. Therefore, we developed a highly sensitive, minimally invasive research platform for quantifying the pumping capacity of collecting lymphatic vessels in the rodent tail and forelimb. To achieve this, we have integrated a near-infrared lymphatic imaging system with a feedback-controlled pressure cuff to modulate lymph flow. After occluding lymphatic flow by inflating a pressure cuff on the limb or tail, we gradually deflate the cuff while imaging flow restoration proximal to the cuff. Using prescribed pressure applications and automated image processing of fluorescence intensity levels in the vessels, we were able to noninvasively quantify the effective pumping pressure (Peff, pressure at which flow is restored after occlusion) and vessel emptying rate (rate of fluorescence clearance during flow occlusion) of lymphatics in the rat. To demonstrate the sensitivity of this system to changes in lymphatic function, a nitric oxide (NO) donor cream, glyceryl trinitrate ointment (GTNO), was applied to the tails. GTNO decreased Peff of the vessels by nearly 50% and the average emptying rate by more than 60%. We also demonstrate the suitability of this approach for acquiring measurements on the rat forelimb. Thus, this novel research platform provides the first minimally invasive measurements of Peff and emptying rate in rodents. This experimental platform holds strong potential for future in vivo studies that seek to evaluate changes in lymphatic health and disease.


2001 ◽  
Vol 7 (S2) ◽  
pp. 162-163
Author(s):  
EN Lewis ◽  
LH Kidder ◽  
KS Haber

Single point near-infrared (NIR) spectroscopy is used extensively for characterizing raw materials and finished products in a wide variety of industries: polymers, paper, film, pharmaceuticals, paintings and coatings, food and beverages, agricultural products. As advanced industrial materials become more complex, their functionality is often determined by the spatial distribution of their discrete sample constituents. However, conventional single point NIR spectroscopy cannot adequately probe the interrelationship between the spatial distribution of sample components with the physical properties of the sample. to fully characterize these samples, it is necessary to probe simultaneously spatial and chemical heterogeneity and correlate these properties with sample characteristics.Recently, we have developed a novel NIR imaging spectrometer that can deliver spatially resolved chemical information very rapidly. in contrast to conventional, single point NIR spectrometers, the imaging system uses an infrared focal-plane array (FPA) to collect up to 76,800 complete spectra, one for each pixel on the array, in approximately one minute.


Blood ◽  
2008 ◽  
Vol 112 (11) ◽  
pp. 391-391
Author(s):  
Malgorzata Kamocka ◽  
Zhiliang Xu ◽  
Nan Chen ◽  
Mark Alber ◽  
Elliot D. Rosen

Abstract Using 2-photon intravital microscopy we have generated high resolution, near real-time 3-dimensional images of a developing thrombus. Following Titanium - Sapphire laser-induced injuries in mouse mesenteric vessels, the developing thrombus was monitored by collecting stacks of confocal images through the developing thrombus. Data were collected in 3 channels for fluorescently labeled platelets, fibrinogen and 70,000 MW dextran. By including fluorescently labeled dextran in the blood we were able to monitor flow (plasma) and not labeled cells (leukocytes and erythrocytes) forming black silhouettes in the plasma. Since each 3-D reconstruction involves a series of scans, we were able to generate approximately 2–3 reconstructions per minute. Thus, the system sacrifices temporal resolution for high resolution structural information revealing the changing, heterogeneous sub-domain structure of the developing thrombus. The imaging system has been used to study the consequences of FVII-deficiency. Following injury, of the luminal surface of the vessel, a thin layer of platelets and fibrin accumulated at the injury site. Unlike injuries in wild-type mice where the thrombus continues to grow, the injuries in FVII deficient mice failed to grow as a result of frequent embolization from the developing structure. Interestingly, in a model of ferric chloride induced injury of the carotid artery, thrombi in FVII deficient mice form large structures capable of reducing flow although, unlike wild type mice, the FVII deficient animals fail to form stable occlusive clots. In parallel with the modified experimental vascular injury model, we have begun development of a computational model of thrombus development. The modeling framework consists of a stochastic and discrete Cellular Potts Model (CPM) to describe platelet and cellular interactions and continuous submodels to describe hydrodynamic and biochemical reactions. Our multiscale model includes the vessel wall, platelets (in resting and activated states), blood cells, coagulation reactions, fibrin formation, and hydrodynamic parameters as components. By comparing the in vivo experimental results with those of simulations varying the concentration of FVII we are able to refine and validate the computational model of thrombogenesis.


Sign in / Sign up

Export Citation Format

Share Document