scholarly journals A study on power losses of the 50 kVA SiC converter including reverse conduction phenomenon

2016 ◽  
Vol 64 (4) ◽  
pp. 907-914
Author(s):  
J. Rąbkowski ◽  
T. Płatek

Abstract This paper deals with performance of the 50 kVA three-phase converter built with switches based on SiC MOSFET and anti-parallel Schottky diodes. In contrast to popular IGBT converters, a negative switch current is capable of flowing through the reverse conducting transistor, which results in different distribution of power losses among the devices. Thus, equations describing the conduction power losses of the transistor and diode are improved and verified by means of circuit simulations in Saber. Moreover, a comparison of power losses calculated with the use of standard and new equations is also shown. Total power losses in three SiC MOSFET modules of a 50 kVA converter operating at 20 kHz are up to 30% lower when reverse conduction is taken into account. This shows the importance of the discussed problem and proves that much better accuracy in the estimation of power losses and junction temperatures of SiC devices may be obtained with the proposed approach.

Electronics ◽  
2019 ◽  
Vol 8 (9) ◽  
pp. 969
Author(s):  
Yang ◽  
Choi

The conventional three-phase split-output inverter (SOI) has been used for grid-connected applications because it does not require dead time and has no shoot-through problems. Recently, the conventional inverter uses the silicon carbide (SiC) schottky diodes for the freewheeling diodes because of its no reverse-recovery problem. Nevertheless, in a practical design, the SiC schottky diodes suffer from current overshoots and voltage oscillations. These overshoots and oscillations result in switching-power losses, decreasing the power efficiency of the inverter. To alleviate this drawback, we present a three-phase SOI using magnetically coupled inductor switching technique. The magnetically coupled inductor switching technique uses one auxiliary diode and coupled inductor for each switching leg in the three-phase SOI. By the operation of the coupled inductor, the main diode current is shifted to the auxiliary diode without the reverse-recovery process. The proposed inverter reduces switching-power losses by alleviating current overshoots and voltage oscillations of SiC schottky diodes. It achieves higher power efficiency than the conventional inverter. We discuss experimental results for a 1.0 kW prototype inverter to verify the performance of the proposed inverter.


2008 ◽  
Vol 600-603 ◽  
pp. 1235-1238
Author(s):  
Won Suk Choi ◽  
Sung Mo Young ◽  
Richard L. Woodin ◽  
A.W. Witt ◽  
J. Shovlin

SuperFETTM MOSFETs and silicon carbide (SiC) Schottky diodes are applied to continuous conduction mode active power factor correction pre-regulators. SuperFETTM MOSFETs can reduce power losses dramatically with their extremely low RDS(ON) and fast switching. The SiC Schottky diode has virtually zero reverse recovery current and high thermal conductivity, and is close to an ideal diode for a CCM PFC circuit. Due to these outstanding switching characteristics, frequency can be increased. In this paper, the SiC Schottky diode’s and SuperFETTM MOSFET’s performance have been verified in a CCM PFC boost converter. These products can reduce the total power losses and enhance the system efficiency.


2021 ◽  
Vol 60 (3) ◽  
pp. 79-91
Author(s):  
Dmitry Tugay ◽  
Olexandr Shkurpela ◽  
Valentyn Akymov ◽  
Ivan Kostenko ◽  
Oleksandr Plakhtii

A new model for decomposition of the total power losses, which includes four components is proposed. Each of the components of the proposed model has a certain physical meaning due to the nature of electromagnetic processes in a three-phase four-wire system. Definitions to describe each of the proposed components are formulated. It is shown that each of supplementary components of the total loss power is proportional to the minimum possible loss power and to the square of the RMS value of the power, which is caused by its occurrence in three-phase four-wire power supply system, and it is inversely proportional to the mean square of the net power loss. The synthesized Matlab-model for verification of the four-component structure of power losses showed a high degree of its adequacy. The proposed model allows us to rethink the description of power losses in three-phase AC circuits and can be used in specialized measuring instruments for electrical networks monitoring. Using the information obtained in the monitoring process, it is possible to plan technical measures to reduce losses of electrical energy in the power supply system, as well as to estimate the capital costs of these measures.


2021 ◽  
Vol 11 (3) ◽  
pp. 1322
Author(s):  
Dariusz Zieliński ◽  
Karol Fatyga

This paper proposes a control algorithm for a hybrid power electronic AC/DC converter for prosumer applications operating under deep phase current asymmetry. The proposed system allows independent control of active and reactive power for each phase of the power converter without current pulsation on the DC link connected to an energy store. The system and its algorithm are based on a three-phase converter in four-wire topology (AC/DC 3p-4w) with two dual-active bridge (DC/DC) converters, interfaced with a supercapacitor and an energy storage. The control algorithm tests were carried out in a Hardware in the Loop environment. Obtained results indicate that operation with deep unbalances and powers of opposite signs in individual phases leads to current oscillations in the DC link. This phenomenon significantly limits energy storage utilization due to safety and durability reasons. The proposed algorithm significantly reduces the level of pulsation in the DC link which increases safety and reduces strain on lithium-ion storage technology, enabling their application in four-wire converter applications.


Sign in / Sign up

Export Citation Format

Share Document