scholarly journals Cloud Computing and Extreme Learning Machine for a Distributed Energy Consumption Forecasting in Equipment-Manufacturing Enterprises

2016 ◽  
Vol 16 (6) ◽  
pp. 83-97 ◽  
Author(s):  
Rui-Dong Wang ◽  
Xue-Shan Sun ◽  
Xin Yang ◽  
Haiju Hu

Abstract Energy consumption forecasting is a kind of fundamental work of the energy management in equipment-manufacturing enterprises, and an important way to reduce energy consumption. Therefore, this paper proposes an intellectualized, short-term distributed energy consumption forecasting model for equipment-manufacturing enterprises based on cloud computing and extreme learning machine considering the practical enterprise situation of massive and high-dimension data. The analysis of the real energy consumption data provided by LB Enterprise was undertaken and corresponding calculating experiments were completed using a 32-node cloud computing cluster. The experimental results show that the energy consumption forecasting accuracy of the proposed model is higher than the traditional support vector regression and the generalized neural network algorithm. Furthermore, the proposed forecasting algorithm possesses excellent parallel performance, overcomes the shortcoming of a single computer’s insufficient computing power when facing massive and high-dimensional data without increasing the cost.

Energies ◽  
2018 ◽  
Vol 11 (9) ◽  
pp. 2475 ◽  
Author(s):  
Menglu Li ◽  
Wei Wang ◽  
Gejirifu De ◽  
Xionghua Ji ◽  
Zhongfu Tan

Carbon emissions and environmental protection issues have brought pressure from the international community during Chinese economic development. Recently, Chinese Government announced that carbon emissions per unit of GDP would fall by 60–65% compared with 2005 and non-fossil fuel energy would account for 20% of primary energy consumption by 2030. The Beijing-Tianjin-Hebei region is an important regional energy consumption center in China, and its energy structure is typically coal-based which is similar to the whole country. Therefore, forecasting energy consumption related carbon emissions is of great significance to emissions reduction and upgrading of energy supply in the Beijing-Tianjin-Hebei region. Thus, this study thoroughly analyzed the main energy sources of carbon emissions including coal, petrol, natural gas, and coal power in this region. Secondly, the kernel function of the support vector machine was applied to the extreme learning machine algorithm to optimize the connection weight matrix between the original hidden layer and the output layer. Thirdly, the grey prediction theory was used to predict major energy consumption in the region from 2017 to 2030. Then, the energy consumption and carbon emissions data for 2000–2016 were used as the training and test sets for the SVM-ELM (Support Vector Machine-Extreme Learning Machine) model. The result of SVM-ELM model was compared with the forecasting results of SVM (Support Vector Machine Algorithm) and ELM (Extreme Learning Machine) algorithm. The accuracy of SVM-ELM was shown to be higher. Finally, we used forecasting output of GM (Grey Prediction Theory) (1, 1) as the input of the SVM-ELM model to predict carbon emissions in the region from 2017 to 2030. The results showed that the proportion of energy consumption seriously affects the amount of carbon emissions. We found that the energy consumption of electricity and natural gas will reach 45% by 2030 and carbon emissions in the region can be controlled below 96.9 million tons. Therefore, accelerating the upgradation of industrial structure will be the key task for the government in controlling the amount of carbon emissions in the next step.


2021 ◽  
Vol 14 (1) ◽  
Author(s):  
Ji-Yong An ◽  
Fan-Rong Meng ◽  
Zi-Ji Yan

Abstract Background Prediction of novel Drug–Target interactions (DTIs) plays an important role in discovering new drug candidates and finding new proteins to target. In consideration of the time-consuming and expensive of experimental methods. Therefore, it is a challenging task that how to develop efficient computational approaches for the accurate predicting potential associations between drug and target. Results In the paper, we proposed a novel computational method called WELM-SURF based on drug fingerprints and protein evolutionary information for identifying DTIs. More specifically, for exploiting protein sequence feature, Position Specific Scoring Matrix (PSSM) is applied to capturing protein evolutionary information and Speed up robot features (SURF) is employed to extract sequence key feature from PSSM. For drug fingerprints, the chemical structure of molecular substructure fingerprints was used to represent drug as feature vector. Take account of the advantage that the Weighted Extreme Learning Machine (WELM) has short training time, good generalization ability, and most importantly ability to efficiently execute classification by optimizing the loss function of weight matrix. Therefore, the WELM classifier is used to carry out classification based on extracted features for predicting DTIs. The performance of the WELM-SURF model was evaluated by experimental validations on enzyme, ion channel, GPCRs and nuclear receptor datasets by using fivefold cross-validation test. The WELM-SURF obtained average accuracies of 93.54, 90.58, 85.43 and 77.45% on enzyme, ion channels, GPCRs and nuclear receptor dataset respectively. We also compared our performance with the Extreme Learning Machine (ELM), the state-of-the-art Support Vector Machine (SVM) on enzyme and ion channels dataset and other exiting methods on four datasets. By comparing with experimental results, the performance of WELM-SURF is significantly better than that of ELM, SVM and other previous methods in the domain. Conclusion The results demonstrated that the proposed WELM-SURF model is competent for predicting DTIs with high accuracy and robustness. It is anticipated that the WELM-SURF method is a useful computational tool to facilitate widely bioinformatics studies related to DTIs prediction.


2015 ◽  
Vol 2015 ◽  
pp. 1-7
Author(s):  
Xue-cun Yang ◽  
Xiao-ru Yan ◽  
Chun-feng Song

For coal slurry pipeline blockage prediction problem, through the analysis of actual scene, it is determined that the pressure prediction from each measuring point is the premise of pipeline blockage prediction. Kernel function of support vector machine is introduced into extreme learning machine, the parameters are optimized by particle swarm algorithm, and blockage prediction method based on particle swarm optimization kernel function extreme learning machine (PSOKELM) is put forward. The actual test data from HuangLing coal gangue power plant are used for simulation experiments and compared with support vector machine prediction model optimized by particle swarm algorithm (PSOSVM) and kernel function extreme learning machine prediction model (KELM). The results prove that mean square error (MSE) for the prediction model based on PSOKELM is 0.0038 and the correlation coefficient is 0.9955, which is superior to prediction model based on PSOSVM in speed and accuracy and superior to KELM prediction model in accuracy.


2021 ◽  
Vol 5 (2) ◽  
pp. 62-70
Author(s):  
Ömer KASIM

Cardiotocography (CTG) is used for monitoring the fetal heart rate signals during pregnancy. Evaluation of these signals by specialists provides information about fetal status. When a clinical decision support system is introduced with a system that can automatically classify these signals, it is more sensitive for experts to examine CTG data. In this study, CTG data were analysed with the Extreme Learning Machine (ELM) algorithm and these data were classified as normal, suspicious and pathological as well as benign and malicious. The proposed method is validated with the University of California International CTG data set. The performance of the proposed method is evaluated with accuracy, f1 score, Cohen kappa, precision, and recall metrics. As a result of the experiments, binary classification accuracy was obtained as 99.29%. There was only 1 false positive.  When multi-class classification was performed, the accuracy was obtained as 98.12%.  The amount of false positives was found as 2. The processing time of the training and testing of the ELM algorithm were quite minimized in terms of data processing compared to the support vector machine and multi-layer perceptron. This result proved that a high classification accuracy was obtained by analysing the CTG data both binary and multiple classification.


2014 ◽  
Vol 2014 ◽  
pp. 1-6 ◽  
Author(s):  
Nan Liu ◽  
Jiuwen Cao ◽  
Zhi Xiong Koh ◽  
Pin Pin Pek ◽  
Marcus Eng Hock Ong

This paper presents a novel risk stratification method using extreme learning machine (ELM). ELM was integrated into a scoring system to identify the risk of cardiac arrest in emergency department (ED) patients. The experiments were conducted on a cohort of 1025 critically ill patients presented to the ED of a tertiary hospital. ELM and voting based ELM (V-ELM) were evaluated. To enhance the prediction performance, we proposed a selective V-ELM (SV-ELM) algorithm. The results showed that ELM based scoring methods outperformed support vector machine (SVM) based scoring method in the receiver operation characteristic analysis.


Mathematics ◽  
2020 ◽  
Vol 8 (2) ◽  
pp. 152 ◽  
Author(s):  
Su-qi Zhang ◽  
Kuo-Ping Lin

Short-term traffic flow forecasting is the technical basis of the intelligent transportation system (ITS). Higher precision, short-term traffic flow forecasting plays an important role in alleviating road congestion and improving traffic management efficiency. In order to improve the accuracy of short-term traffic flow forecasting, an improved bird swarm optimizer (IBSA) is used to optimize the random parameters of the extreme learning machine (ELM). In addition, the improved bird swarm optimization extreme learning machine (IBSAELM) model is established to predict short-term traffic flow. The main researches in this paper are as follows: (1) The bird swarm optimizer (BSA) is prone to fall into the local optimum, so the distribution mechanism of the BSA optimizer is improved. The first five percent of the particles with better fitness values are selected as producers. The last ten percent of the particles with worse fitness values are selected as beggars. (2) The one-day and two-day traffic flows are predicted by the support vector machine (SVM), particle swarm optimization support vector machine (PSOSVM), bird swarm optimization extreme learning machine (BSAELM) and IBSAELM models, respectively. (3) The prediction results of the models are evaluated. For the one-day traffic flow sequence, the mean absolute percentage error (MAPE) values of the IBSAELM model are smaller than the SVM, PSOSVM and BSAELM models, respectively. The experimental analysis results show that the IBSAELM model proposed in this study can meet the actual engineering requirements.


Sign in / Sign up

Export Citation Format

Share Document