scholarly journals Optimization of Adsorption Parameters for Ultra-Fine Calcite Using a Box-Behnken Experimental Design

2018 ◽  
Vol 16 (1) ◽  
pp. 992-1000 ◽  
Author(s):  
Metin Uçurum ◽  
Akın Özdemir ◽  
Çağatay Teke ◽  
Hüseyin Serencam ◽  
Mümtaz İpek

AbstractRemoval of heavy metals from wastewater is a significant issue because it prevents environmental-based concerns and impacts a large number of diseases and disorders. Many low-cost natural materials have been offered recently as possible precursors to commercial synthetic adsorbents. Ultra-fine calcite, one of these natural materials, has been investigated as a potential commercial adsorbent. Response surface designs are effective experimental techniques to investigate the heavy metal adsorption capacity of ultra-fine calcite. In the present study, one such response surface design, Box-Behnken, is used in order to optimize adsorption factors, such as pH level, initial metal concentration, stirring rate and adsorption time, and to determine the heavy metal capacity of this adsorbent. Our results show that the proposed methodology is an effective approach to optimizing the adsorption process and to maximize the heavy metal capacity.

Author(s):  
Abimbola O. Aleshinloye ◽  
Kemayou Ngangsso ◽  
Feyisara B. Adaramola ◽  
Adebayo Onigbinde

This study investigated the potential of some agricultural wastes viz; African Star apple seed shell (ASS, plant source), crab shell (CS, animal source) and chicken egg shell (ES, animal source) as eco-friendly and low-cost biological materials for the removal of heavy metals from poultry wastewater. TS, TSS and TDS of the wastewater sample were assayed by filtration methods, chloride content by previously reported method and heavy metal contents (Zn, V, Cd, Fe, Ni, Cu, Co, Pb, Cr and Mn); were analyzed using Microwave Plasma Atomic Emission Spectrometer. The results of the solids and chloride contents of the poultry wastewater were TDS (3100 mg/L), TS (3700 mg/L), TSS (6000 mg/L) and chloride (4.7 g/L); all above the EPA permissible limits. Results of the FTIR analysis showed that ASS is an amide polymer while the CS and ES shells are mixtures of amide and carbonate polymers. Also, results of heavy metal analysis before and after adsorption showed that ASS caused removal of Zn, V, Fe, Cu, Co/ Pb and Mn by 48.27, 32.22, 49.64, 91.44, 100 and 82.39% respectively while Cd, Ni and Cr contents increased by 31, 61 and 48.3% respectively. CS showed removal of Fe, Ni/ Co/ Cr, Pb and Mn by 89.64, 100, 3.51 and 95.96% respectively while Zn, V, Cd and Cu contents increased by 1.7, 61.2, 76.1 and 68.1% respectively. Meanwhile, with ES, the contents of Zn, Fe, Ni, Cu, Cr and Mn increased by 31.56, 86.36, 100, 55.5, 45.80 and 90.33% respectively while the contents of V, Cd, Co and Pb decreased by 78.9, 86.7, 42.5 and 46.2% respectively. This study demonstrated the use of ASS, CS and ES as low- cost and eco-friendly agricultural wastes with significant potential for removal of heavy metals from wastewaters.


2016 ◽  
Vol 7 (4) ◽  
pp. 387-419 ◽  
Author(s):  
Renu ◽  
Madhu Agarwal ◽  
K. Singh

Heavy metals are discharged into water from various industries. They can be toxic or carcinogenic in nature and can cause severe problems for humans and aquatic ecosystems. Thus, the removal of heavy metals from wastewater is a serious problem. The adsorption process is widely used for the removal of heavy metals from wastewater because of its low cost, availability and eco-friendly nature. Both commercial adsorbents and bioadsorbents are used for the removal of heavy metals from wastewater, with high removal capacity. This review article aims to compile scattered information on the different adsorbents that are used for heavy metal removal and to provide information on the commercially available and natural bioadsorbents used for removal of chromium, cadmium and copper, in particular.


2015 ◽  
Vol 2015 ◽  
pp. 1-13 ◽  
Author(s):  
Md. Sayedur Rahman ◽  
Kathiresan V. Sathasivam

Biosorption process is a promising technology for the removal of heavy metals from industrial wastes and effluents using low-cost and effective biosorbents. In the present study, adsorption of Pb2+, Cu2+, Fe2+, and Zn2+onto dried biomass of red seaweedKappaphycussp. was investigated as a function of pH, contact time, initial metal ion concentration, and temperature. The experimental data were evaluated by four isotherm models (Langmuir, Freundlich, Temkin, and Dubinin-Radushkevich) and four kinetic models (pseudo-first-order, pseudo-second-order, Elovich, and intraparticle diffusion models). The adsorption process was feasible, spontaneous, and endothermic in nature. Functional groups in the biomass involved in metal adsorption process were revealed as carboxylic and sulfonic acids and sulfonate by Fourier transform infrared analysis. A total of nine error functions were applied to validate the models. We strongly suggest the analysis of error functions for validating adsorption isotherm and kinetic models using linear methods. The present work shows that the red seaweedKappaphycussp. can be used as a potentially low-cost biosorbent for the removal of heavy metal ions from aqueous solutions. Further study is warranted to evaluate its feasibility for the removal of heavy metals from the real environment.


Author(s):  
B. Sulochana ◽  
B. Re. Victorbabu

Box and Hunter [1] introduced the concept of rotatability for response surface designs. The concept of slope-rotatability was introduced by Hader and Park [2] as an analogous to rotatability property, which is an important design criterion for response surface design. Slope-rotatable design is that of which the variance of partial derivative is a function of distance from the design (d). Recently, a few measures of slope-rotatability for a given response surface design was introduced. In this paper, a new method of slope rotatability for second order response surface designs under tri-diagonal correlation structure of errors using a pair of symmetrical unequal block arrangements with two unequal block sizes is studied. Further, a study on the dependence of variance function of the second order response surface at different design points for different values of tri-diagonal correlation coefficient ρ which lies between -0.9 to 0.9 and the distance from centre (d) is suggested.


Author(s):  
Harendra Kumar Sharma ◽  
Irfan Rashid Sofi ◽  
Khursheed Ahmad Wani

Heavy metal contamination in water is a serious concern to the environment and human health. High concentrations of heavy metals in the environment can be toxic to a variety of living species. Natural bio-absorbents are abundant and inexpensive and considered a waste if not managed properly. The role of bio-absorbents has been widely studied and has been utilized for the removal of heavy metals. The objective of the chapter is to search the database for different absorbents and their efficiency for the removal of heavy metals. Key words related to the study have been used to select different papers published by the researchers all over the world. A rigorous three-tier process has been utilized by the authors to select the papers from the database for the current study. This chapter has identified a few research gaps in the field of heavy metal removal by using different low cast absorbents that need to be taken into account in future research.


Author(s):  
Md. Shazzad Hossain ◽  
Farzana Khan Rony ◽  
Sazia Sultana ◽  
Md.Humayun Kabir ◽  
Sumaya F. Kabir ◽  
...  

Over the past few years, activated carbon (AC) has attained significant attention as an efficient adsorbent for heavy metal (lead, cadmium, chromium etc.) removal. In Bangladesh, bagasse and jute fibre are the two most potential raw materials for producing activated carbon due to their high availability and low cost. The activated carbon was produced by thermal treatment method. The produced AC were characterized using FTIR, XRD, SEM etc. Batch experiments under agitation was also carried out for adsorption of heavy metals and then characterized using AAS (Atomic Adsorption Spectroscopy). Adsorption with commercially available activated carbon was also done to use as standard. Among all ACs produced in this study, the highest percentage removal of heavy metals which were Cr3+ and Cd2+ was at 57.06% and 43.01% respectively for J-400 ( AC produced from jute fibre at 4000C). This obtained value was 16.6% and 12.9% higher in comparison to Commercially available Activated carbon for Cr3+ and Cd2+ respectively.


Sign in / Sign up

Export Citation Format

Share Document