A simplified proof of a lower complexity estimate

2013 ◽  
Vol 23 (2) ◽  
Author(s):  
V. M. Khrapchenko
2013 ◽  
Vol 756-759 ◽  
pp. 3652-3658
Author(s):  
You Li Lu ◽  
Jun Luo

Under the study of Kernel Methods, this paper put forward two improved algorithm which called R-SVM & I-SVDD in order to cope with the imbalanced data sets in closed systems. R-SVM used K-means algorithm clustering space samples while I-SVDD improved the performance of original SVDD by imbalanced sample training. Experiment of two sets of system call data set shows that these two algorithms are more effectively and R-SVM has a lower complexity.


2020 ◽  
pp. 1-10
Author(s):  
Carl J. Wenning ◽  
Rebecca E. Vieyra
Keyword(s):  

2021 ◽  
pp. 1-9
Author(s):  
Brian R. Belland ◽  
ChanMin Kim ◽  
Anna Y. Zhang ◽  
Afaf A. Baabdullah ◽  
Eunseo Lee

Sensors ◽  
2020 ◽  
Vol 21 (1) ◽  
pp. 116
Author(s):  
Wissal Ben Ameur ◽  
Philippe Mary ◽  
Jean-François Hélard ◽  
Marion Dumay ◽  
Jean Schwoerer

Non-orthogonal multiple access schemes with grant free access have been recently highlighted as a prominent solution to meet the stringent requirements of massive machine-type communications (mMTCs). In particular, the multi-user shared access (MUSA) scheme has shown great potential to grant free access to the available resources. For the sake of simplicity, MUSA is generally conducted with the successive interference cancellation (SIC) receiver, which offers a low decoding complexity. However, this family of receivers requires sufficiently diversified received user powers in order to ensure the best performance and avoid the error propagation phenomenon. The power allocation has been considered as a complicated issue especially for a decentralized decision with a minimum signaling overhead. In this paper, we propose a novel algorithm for an autonomous power decision with a minimal overhead based on a tight approximation of the bit error probability (BEP) while considering the error propagation phenomenon. We investigate the efficiency of multi-armed bandit (MAB) approaches for this problem in two different reward scenarios: (i) in Scenario 1, each user reward only informs about whether its own packet was successfully transmitted or not; (ii) in Scenario 2, each user reward may carry information about the other interfering user packets. The performances of the proposed algorithm and the MAB techniques are compared in terms of the successful transmission rate. The simulation results prove that the MAB algorithms show a better performance in the second scenario compared to the first one. However, in both scenarios, the proposed algorithm outperforms the MAB techniques with a lower complexity at user equipment.


2014 ◽  
Vol 513-517 ◽  
pp. 3423-3428
Author(s):  
Zhi Kang Zhou ◽  
Qi Zhu

In this paper, an amplify-and-forward (AF) multi-relay network is considered. In order to minimize the system outage probability, a new power allocation and multi-relay selection algorithm is proposed under total power constraint and each node power constraint. In the proposed algorithm, the ideal of ordering is adopted, which leads to the remarkable decrease of the computation complexity together with simple power reallocation. Simulation results show that the proposed multi-relay selection algorithm performs close to the optimal scheme with optimal power allocation and exhaustive search (OPA-ES) but with much lower complexity.


2004 ◽  
Vol 16 (4) ◽  
pp. 863-883 ◽  
Author(s):  
Youshen Xia

Recently, a projection neural network has been shown to be a promising computational model for solving variational inequality problems with box constraints. This letter presents an extended projection neural network for solving monotone variational inequality problems with linear and nonlinear constraints. In particular, the proposed neural network can include the projection neural network as a special case. Compared with the modified projection-type methods for solving constrained monotone variational inequality problems, the proposed neural network has a lower complexity and is suitable for parallel implementation. Furthermore, the proposed neural network is theoretically proven to be exponentially convergent to an exact solution without a Lipschitz condition. Illustrative examples show that the extended projection neural network can be used to solve constrained monotone variational inequality problems.


Author(s):  
Sebastijan Dumancic ◽  
Hendrik Blockeel

The goal of unsupervised representation learning is to extract a new representation of data, such that solving many different tasks becomes easier. Existing methods typically focus on vectorized data and offer little support for relational data, which additionally describes relationships among instances. In this work we introduce an approach for relational unsupervised representation learning. Viewing a relational dataset as a hypergraph, new features are obtained by clustering vertices and hyperedges. To find a representation suited for many relational learning tasks, a wide range of similarities between relational objects is considered, e.g. feature and structural similarities. We experimentally evaluate the proposed approach and show that models learned on such latent representations perform better, have lower complexity, and outperform the existing approaches on classification tasks.


2013 ◽  
Vol 47 ◽  
pp. 741-808 ◽  
Author(s):  
B. Cuenca Grau ◽  
I. Horrocks ◽  
M. Krötzsch ◽  
C. Kupke ◽  
D. Magka ◽  
...  

Answering conjunctive queries (CQs) over a set of facts extended with existential rules is a prominent problem in knowledge representation and databases. This problem can be solved using the chase algorithm, which extends the given set of facts with fresh facts in order to satisfy the rules. If the chase terminates, then CQs can be evaluated directly in the resulting set of facts. The chase, however, does not terminate necessarily, and checking whether the chase terminates on a given set of rules and facts is undecidable. Numerous acyclicity notions were proposed as sufficient conditions for chase termination. In this paper, we present two new acyclicity notions called model-faithful acyclicity (MFA) and model-summarising acyclicity (MSA). Furthermore, we investigate the landscape of the known acyclicity notions and establish a complete taxonomy of all notions known to us. Finally, we show that MFA and MSA generalise most of these notions. Existential rules are closely related to the Horn fragments of the OWL 2 ontology language; furthermore, several prominent OWL 2 reasoners implement CQ answering by using the chase to materialise all relevant facts. In order to avoid termination problems, many of these systems handle only the OWL 2 RL profile of OWL 2; furthermore, some systems go beyond OWL 2 RL, but without any termination guarantees. In this paper we also investigate whether various acyclicity notions can provide a principled and practical solution to these problems. On the theoretical side, we show that query answering for acyclic ontologies is of lower complexity than for general ontologies. On the practical side, we show that many of the commonly used OWL 2 ontologies are MSA, and that the number of facts obtained by materialisation is not too large. Our results thus suggest that principled development of materialisation-based OWL 2 reasoners is practically feasible.


Author(s):  
Zohreh Mansoori Moghadam ◽  
Philipp Henneke ◽  
Julia Kolter

The cellular formation of reactive oxygen species (ROS) represents an evolutionary ancient antimicrobial defense system against microorganisms. The NADPH oxidases (NOX), which are predominantly localized to endosomes, and the electron transport chain in mitochondria are the major sources of ROS. Like any powerful immunological process, ROS formation has costs, in particular collateral tissue damage of the host. Moreover, microorganisms have developed defense mechanisms against ROS, an example for an arms race between species. Thus, although NOX orthologs have been identified in organisms as diverse as plants, fruit flies, rodents, and humans, ROS functions have developed and diversified to affect a multitude of cellular properties, i.e., far beyond direct antimicrobial activity. Here, we focus on the development of NOX in phagocytic cells, where the so-called respiratory burst in phagolysosomes contributes to the elimination of ingested microorganisms. Yet, NOX participates in cellular signaling in a cell-intrinsic and -extrinsic manner, e.g., via the release of ROS into the extracellular space. Accordingly, in humans, the inherited deficiency of NOX components is characterized by infections with bacteria and fungi and a seemingly independently dysregulated inflammatory response. Since ROS have both antimicrobial and immunomodulatory properties, their tight regulation in space and time is required for an efficient and well-balanced immune response, which allows for the reestablishment of tissue homeostasis. In addition, distinct NOX homologs expressed by non-phagocytic cells and mitochondrial ROS are interlinked with phagocytic NOX functions and thus affect the overall redox state of the tissue and the cellular activity in a complex fashion. Overall, the systematic and comparative analysis of cellular ROS functions in organisms of lower complexity provides clues for understanding the contribution of ROS and ROS deficiency to human health and disease.


Sign in / Sign up

Export Citation Format

Share Document