scholarly journals Phytochemicals and Biological Activity of Desert Date (Balanites aegyptiaca (L.) Delile)

Plants ◽  
2020 ◽  
Vol 10 (1) ◽  
pp. 32
Author(s):  
Hosakatte Niranjana Murthy ◽  
Guggalada Govardhana Yadav ◽  
Yaser Hassan Dewir ◽  
Abdullah Ibrahim

Many underutilized tree species are good sources of food, fodder and possible therapeutic agents. Balanites aegyptiaca (L.) Delile belongs to the Zygophyllaceae family and is popularly known as “desert date”, reflecting its edible fruits. This tree grows naturally in Africa, the Middle East and the Indian subcontinent. Local inhabitants use fruits, leaves, roots, stem and root bark of the species for the treatment of various ailments. Several research studies demonstrate that extracts and phytochemicals isolated from desert date display antioxidant, anticancer, antidiabetic, anti-inflammatory, antimicrobial, hepatoprotective and molluscicidal activities. Mesocarp of fruits, seeds, leaves, stem and root bark are rich sources of saponins. These tissues are also rich in phenolic acids, flavonoids, coumarins, alkaloids and polysterols. Some constituents show antioxidant, anticancer and antidiabetic properties. The objective of this review is to summarize studies on diverse bioactive compounds and the beneficial properties of B. aegyptiaca.

Author(s):  
Suresh Choudhary ◽  
G Jeyabalan ◽  
Naresh Kalra

The Benzothiazole nucleus is present in compounds involved in research aimed at evaluating new products that possess interesting biological activities, such as antitumor, antimicrobial, anthelmintic, antileishmanial, anticonvulsant and anti-inflammatory. The present review focuses on the benzothiazoles with potential activities that are now in development. The synthesized benzothiazole derivatives could be considered as lead molecule for the development of therapeutic agents.


2009 ◽  
Vol 6 (1) ◽  
pp. 57-63 ◽  
Author(s):  
Mengjie Wu ◽  
Zhiyuan Gu

Moutan Cortex, a widely used traditional Chinese medicine for the treatment of various diseases, is the root bark ofPaeonia suffruticosa Andrews(Paeoniaceae). Most of the pharmacological investigations of Moutan Cortex have been addressed to its central nervous system activities, anti-oxidative and sedative actions. Otherwise, there are few reports about the active compounds with anti-inflammatory activity of Moutan Cortex. The aim of the present study was to screen and identify bioactive compounds with anti-inflammatory effect from Moutan Cortex. With the aid of preparative high performance liquid chromatography (HPLC) technique, ethyl acetate and ethanol extract of Moutan Cortex were isolated into twenty-two fractions. Bioactivities of these fractions were evaluated by measuring expression of tumor necrosis factor-α (TNF-α) in rat synoviocytes subjected to interleukin-1β (IL-1β). Eight compounds were isolated from six active fractions and identified by HPLC/MSn. Purified compounds, paeoniflorin, paeonol and pentagalloylglucose resulted in dose-dependent inhibition of TNF-α synthesis and IL-6 production in synoviocytes treated with proinflammatory mediator. These results suggested that paeonol, paeoniflorin, glycosides and pentagalloylglucose contribute to the anti-inflammatory effect of Moutan Cortex.


Molecules ◽  
2020 ◽  
Vol 25 (23) ◽  
pp. 5690
Author(s):  
Hosakatte Niranjana Murthy ◽  
Dayanand Dalawai ◽  
Yaser Hassan Dewir ◽  
Abdullah Ibrahim

Garcinia morella (Gaertn.) Desr. is an evergreen tree that yields edible fruits, oil, and resin. It is a source of “gamboge”, a gum/resin that has a wide range of uses. The fruits, leaves, and seeds of this tree are rich in bioactive compounds, including xanthones, flavonoids, phenolic acids, organic acids, and terpenoids. Evidence from different studies has demonstrated the antioxidant, antifungal, antiviral, hepatoprotective, anticancer, anti-inflammatory, antibacterial, and larvicidal activities of the fruit, leaf, and seed extracts of G. morella. This review summarizes the information on the phytochemicals of G. morella and the biological activities of its active constituents.


Author(s):  
El-Din Sharaf

3,4-Dihydro-2H-1,3-benzoxazines derivatives are a significant class of heterocycles with a particular awareness due to their remarkable biological activities in humans, plant as well as in animals and also, they are naturally occurrence. Because of alteration in the benzoxazines skeleton, beside their comparative chemical simplicity and accessibility, make these compounds to be suitable sources of other bioactive compounds. Resulting in the discovery of a wide set of these compounds that have a broad biological activity such as antifungal, antibacterial, anti-HIV, anticancer, anticonvulsant, anti-inflammatory and so on. Subsequently, this review herein gives a brief overview of derivatives of 3,4-dihydro-2H-1,3-benzoxazines monomers and their oxo-derivatives chemistry and bioactivities.


2019 ◽  
Author(s):  
Chem Int

Coumarin and its derivatives are widely spread in nature. Coumarin goes to agroup as benzopyrones, which consists of a benzene ring connected to a pyronemoiety. Coumarins displayed a broad range of pharmacologically useful profile.Coumarins are considered as a promising group of bioactive compounds thatexhibited a wide range of biological activities like anti-microbial, anti-viral,antiparasitic, anti-helmintic, analgesic, anti-inflammatory, anti-diabetic, anticancer,anti-oxidant, anti-proliferative, anti-convulsant, and antihypertensiveactivities etc. The coumarin compounds have immense interest due to theirdiverse pharmacological properties. In particular, these biological activities makecoumarin compounds more attractive and testing as novel therapeuticcompounds.


2020 ◽  
Vol 20 (28) ◽  
pp. 2520-2534
Author(s):  
He Huang ◽  
Chuanjun Song ◽  
Junbiao Chang

: Tanshinones are a class of bioactive compounds present in the Chinese herbal medicine Danshen (Salvia miltiorrhiza Bunge), containing among others, abietane diterpene quinone scaffolds. Chemical synthesis and biological activity studies of natural and unnatural tanshinone derivatives have been reviewed in this article.


2015 ◽  
Vol 15 (23) ◽  
pp. 2456-2463 ◽  
Author(s):  
Marilena Antunes-Ricardo ◽  
Janet Gutierrez-Uribe ◽  
Sergio Serna-Saldivar

2019 ◽  
Vol 16 (4) ◽  
pp. 377-391 ◽  
Author(s):  
B.S. Jayashree ◽  
H. Venkatachalam ◽  
Sanchari Basu Mallik

Flavonoids constitute a large group of polyphenolic compounds that are known to have antioxidant properties, through their free radical scavenging abilities. They possess a chromone (γ- benzopyrone) moiety, responsible for eliciting many pharmacological activities. Even though, natural flavonoids are highly potent, owing to their poor solubility, they are less used. Therefore, attempts have been made to improve their stability, solubility, efficacy and kinetics by introducing various substituents on the flavone ring. For nearly the last two decades, flavones were synthesized in our laboratory by simple, convenient and cost-effective methods, with the knowledge of both synthetic and semi-synthetic chemistry. In this direction, it was considered worthwhile to present an overview on the synthesized flavonoids. This review creates a platform for highlighting various modifications done on the flavone system along with their biological activity.


2019 ◽  
Vol 19 (2) ◽  
pp. 114-118
Author(s):  
Gian Luigi Mariottini ◽  
Irwin Darren Grice

Natural compounds extracted from organisms and microorganisms are an important resource for the development of drugs and bioactive molecules. Many such compounds have made valuable contributions in diverse fields such as human health, pharmaceutics and industrial applications. Presently, however, research on investigating natural compounds from marine organisms is scarce. This is somewhat surprising considering that the marine environment makes a major contribution to Earth's ecosystems and consequently possesses a vast storehouse of diverse marine species. Interestingly, of the marine bioactive natural compounds identified to date, many are venoms, coming from Cnidarians (jellyfish, sea anemones, corals). Cnidarians are therefore particularly interesting marine species, producing important biological compounds that warrant further investigation for their development as possible therapeutic agents. From an experimental aspect, this review aims to emphasize and update the current scientific knowledge reported on selected biological activity (antiinflammatory, antimicrobial, antitumoral, anticoagulant, along with several less studied effects) of Cnidarian venoms/extracts, highlighting potential aspects for ongoing research towards their utilization in human therapeutic approaches.


Sign in / Sign up

Export Citation Format

Share Document