scholarly journals Ecological Risk Assessment Of Heavy Metals In Sediments Of A Riverine Wetland, Huaihe River Watershed, China

2015 ◽  
Vol 22 (2) ◽  
pp. 231-242 ◽  
Author(s):  
Hezhong Yuan ◽  
Wei Pan ◽  
Zhengjie Zhu ◽  
Ying Wei ◽  
Qifang Geng ◽  
...  

Abstract The concentrations of Zn, Cr, Cu, As, Cd, and Pb in sediment cores collected from a representative riverine wetland located in the Huaihe River watershed, China, dramaticlly increased from the bottom to upper layer of the cores. Application of principal component analysis (PCA) and enrichment factor (EF) suggested that heavy metals might primarily have been derived from the inflow of contaminated water from an industrial park and agricultural region. Component 1 of the PCA was dominated by Zn, Cr, Cu, Cd, and Pb, while Component 2 was dominated by As. Metals’ high concentrations and EF values showed that the anthropogenic pollutants have increased sharply in recent years and reflect the continuous development of industry and agriculture in the region of the wetland, with a corresponding dramatic deterioration of the environment due to constant effluent of pollutants. Cd exerted the highest potential ecological risk of individual metals of sediment cores. Additionally, integrated RI values for all metals indicated that sediments possessed low ecological risk from the bottom to about 6 cm depth of the cores, moderate ecological risk from about 5 cm depth upwards, then considerable ecological risk from 4 cm depth to the top layer of the sediment cores, which demonstrates a continuous deterioration of environmental quality in recent years in this region.

Author(s):  
Qiuming Chen ◽  
Faming Huang ◽  
Anran Cai

Heavy metals are extremely harmful materials to marine ecosystems and human health. To determine the anthropogenic contributions and ecological risks in Weitou Bay, China, the spatiotemporal variations in the concentrations of heavy metals in surface sediment were investigated during spring 2008 and 2017. The results indicated that high concentrations of pollutants were generally located near the river mouths and along the coast of industrial areas. Principal component analysis indicated that heavy metal contents were mainly affected by industrial waste drainage, urban development, natural weathering and erosion, and interactions between organic matter and sulfides. The potential ecological risk assessment demonstrated that, in 2008, 82% of the sampling sites were at low risk, while 18% were at moderate risk. The situation had deteriorated slightly by 2017, with 73%, 18%, and 9% of stations in Waytou Bay at low, moderate, and very high risk, respectively. Cd was the most harmful metal, followed by Hg. These two elements accounted for more than 80% of the potential ecological risk index (RI) value. The present work analyzed the source of heavy metals, identified the major pollution elements and high risk areas, and provides guidance for pollution control and ecological restoration in Weitou Bay.


Water ◽  
2021 ◽  
Vol 13 (7) ◽  
pp. 894
Author(s):  
Panfeng Liu ◽  
Chaojie Zheng ◽  
Meilan Wen ◽  
Xianrong Luo ◽  
Zhiqiang Wu ◽  
...  

The study deals with the spatio-temporal distribution of heavy metals in the sediments of Chagan lake, Northeast China. The pollution history of heavy metals is studied simultaneously through the 210Pb dating method by analyzing the characteristic of As, Hg, Cd, Cr, Ni, Cu, Pb, and Zn concentration-depth profiles. The potential ecological risk index (RI) and geo-accumulation index (Igeo) were used to evaluate the contamination degree. Principal component analysis (PCA), based on the logarithmic transformation and isometric log-ratio (ilr) transformed data, was applied with the aim of identifying the sources of heavy metals. The element concentrations show that the heavy metals are enriched in the surface sediment and sediment core with a varying degree, which is higher in the surficial residue. The results of Igeo indicate that the Cd and Hg in the surface sediment have reached a slightly contaminated level while other elements, uncontaminated. The results of RI show that the study area can be classified as an area with moderate ecological risk in which Cd and Hg mostly contribute to the overall risk. For the sediment core, the 210Pb dating results accurately reflect the sedimentary history over 153 years. From two evaluation indices (RI and Igeo) calculated by element concentration, there is no contamination, and the potential ecological risk is low during this period. The comparative study between raw and ilr transformed data shows that the closure effect of the raw data can be eliminated by ilr transformation. After that, the components obtained by robust principal component analysis (RPCA) are more representative than those obtained by PCA, both based on ilr transformed dataset, after eliminating the influence of outliers. Based on ilr transformed data with RPCA, three primary sources could be inferred: Cr, Ni, As, Zn, and Cu are mainly derived from natural sources; the main source of Cd and Hg are associated with agricultural activities and energy development; as for Pb, it originated from traffic and coal-burning activities, which is consistent with the fact that the development of tourism, fishery, and agriculture industries has led to the continuous increasing levels of anthropogenic Pb in Chagan Lake. The summarized results and conclusions will undoubtedly enhance the governmental awareness of heavy metal pollution and facilitate appropriate pollution control measures in Chagan Lake.


Water ◽  
2020 ◽  
Vol 12 (2) ◽  
pp. 431
Author(s):  
Liangliang Huang ◽  
Saeed Rad ◽  
Li Xu ◽  
Liangying Gui ◽  
Xiaohong Song ◽  
...  

This research has focused on the source identification, concentration, and ecological risk assessment of eight heavy metals in the largest karst wetland (Huixian) of south China. Numerous samples from superficial soil and sediment within ten representative landuse types were collected and examined, and the results were analyzed using multiple methods. Single pollution index (Pi) results were underpinned by the Geoaccumulation index (Igeo) method, in which Cd was observed as the priority pollutant with the highest contamination degree in this area. As for the most polluted landuse type, via applying Nemerow’s synthetical contamination index (PN) and Potential ecological risk index (RI), the river and rape field posed the highest ecological risks, while moderate for the rest. To quantify the drivers of the contaminants, a principal component analysis (PCA) was carried out and weathering of the watershed’s parent carbonate rocks was found to be the main possible origin, followed by anthropogenic sources induced by agricultural fertilizer. Considering the impacts of these potentially toxic elements on public health, the results of this study are essential to take preventive actions for environmental protection and sustainable development in the region.


2018 ◽  
Vol 6 (1) ◽  
pp. 108 ◽  
Author(s):  
Ram Proshad ◽  
Md. Saiful Islam ◽  
Tapos Kormoker

This study was conducted to assess the ecological risk of heavy metals in soils collected from the industrial vicinity of Tangail district in Bangladesh. In this study, the levels of six heavy metals namely chromium (Cr), nickel (Ni), copper (Cu), arsenic (As), cadmium (Cd), and lead (Pb) in 15 sampling sites around the industrial vicinity of Tangail district in Bangladesh were assessed. The mean concentration of Cr, Ni, Cu, As, Cd and Pb in studied soils were 11.56, 23.92, 37.27, 6.11, 2.01, and 17.46 mg/kg, respectively. Certain indices, including the enrichment factor (EF), contamination factor (Cif), geoaccumulation index (Igeo), pollution load index (PLI), toxic unit analysis, and principal component analysis (PCA) were used to assess the ecological risk. The enrichment factor of all the studied metals for all sampling sites were in the descending order of Cd > Cu > As > Pb >Ni > Cr. The contamination factor values revealed that the studied soils were highly impacted by Cd. The pollution load index (PLI) values of Cd were higher than 1, indicating the progressive deterioration of soil due to Cd contamination. In the context of potential ecological risk (PER), soils from all sampling sites showed moderate to very high potential ecological risk.


2018 ◽  
Vol 10 (9) ◽  
pp. 3115 ◽  
Author(s):  
Li Hua ◽  
Xue Yang ◽  
Yajun Liu ◽  
Xiuli Tan ◽  
Yong Yang

Daye is a city in China known for its rich mineral resources, with a history of metal mining and smelting that dates back more than 3000 years. To analyze the spatial distribution patterns, ecological risk, and sources of heavy metals (Cd, Co, Cr, Cu, Mn, Ni, Pb, and Zn) in soils, 213 topsoil samples were collected in the main urban area of Daye in September 2016. The mean concentrations of Cd, Cu, Pb, and Zn were higher than the corresponding background values, with the mean concentration of Cd being almost seven times its background value. Spatially, the high concentrations of Cd, Mn, Pb, and Zn were mainly concentrated in the southeastern part of the region due to nonferrous metal mining and smelting. However, the high concentrations of Co and Cu were concentrated in the central part of the study area, resulted from copper mining and smelting. The data of the geoaccumulation index showed that the contamination levels ranged from no pollution (Co, Cr, Mn, and Ni) to heavy contamination (Cd, Cu, and Pb). Ecological risk assessment showed that Cd posed a high, serious, and even severe ecological risk in 53.78% of the area of Daye. According to the results of the principal component analysis, mineral exploitation and smelting involving a variety of minerals (ES_M), mining exploitation, and smelting of copper ore (ES_C), and natural sources are the three main sources of heavy metals in these soils. Furthermore, the absolute principal component scores showed that 69.21% and 23.17% of the heavy metal concentrations were ascribed to ES_M and ES_C, respectively.


2014 ◽  
Vol 651-653 ◽  
pp. 1402-1409
Author(s):  
Gui Ping Xu ◽  
Xiao Fei Wang ◽  
Li Jun Chen

Concentrations of heavy metals in sugarcane soil of Guangxi were determined and the potential ecological risk index was used simultaneously to evaluate the extent of heavy metals enrichment contamination. Results showed that the pollution extent of heavy metals in sugarcane soil by potential ecological risk followed the order: Cd>Pb>Cu>Zn, Cu and Zn were slightly polluted, with small potential ecological harm, while Pb and Cd were above moderately polluted, with heavy potential ecological harm. Principal component analysis was applied to estimate the sources of heavy metals contamination, the results indicated that the first two components accounted for 61.016% and 26.920% of the total variance respectively, 4 kinds of heavy metal elements had similar sources, tailing dam lead-zinc concentrator upstream along the coast was the main sources of heavy metal contamination.


Author(s):  
Sajjad Abbasi ◽  
Sara Sheikh Fakhradini ◽  
Neamatollah Jaafarzadeh ◽  
Pooria Ebrahimi ◽  
Shirin Yavar Ashayeri

AbstractThe heavy metal(loid)s concentrations in water and sediments were analyzed in the Hashilan wetland to assess the spatial distribution, pollution status, fate, partitioning, and ecological risk and also to identify the heavy metal(loid)s sources in sediments using PMF (Positive Matrix Factorization) and APCs-MLR (absolute principal component score-multiple linear regression) receptor models. According to the pollution indices, (Ni, Cu, Cr, Mo), and (Zn, Cr, and Cu) are considered the most important pollutants in sediments and water, respectively. Ni, Cr, and Cu are the main contributors to ecological risks in sediments of some stations. The potential ecological risk assessment proposed low ecological risk in water of the study area. Higher distribution coefficient (Kp) values of Ni, Cr, Mn, Cu, Co, Pb, As, and Zn indicated the majority of these heavy metals present in the sediments; whereas, the majority of Cd concentration occurs in water. PMF and APCs-MLR results indicated the natural sources were the main factors affecting the concentrations of Ni, Cr, Zn, Al, Co, Fe, Pb, As, Cd and somewhat Cu. Mixed natural and agricultural activities are the main sources of Mo, and somewhat Cu. According to the results, there is low pollution of TPH (total petroleum hydrocarbons) in the sediment samples. Also, phosphate (PO42−) and nitrate (NO3−) concentrations were below the recommended permissible limits at all sampling sites except the S8 station for NO3−.


Author(s):  
Zhang ◽  
Han ◽  
Liu ◽  
Li ◽  
Wang ◽  
...  

A total of 63 soil samples were collected from three soil profiles (yellow soil, red loam, red soil) from Jiulongjiang river catchment to investigate the distribution, controlling factors, and toxic risks of heavy metals, including Cr, Mn, Fe, Cu, Zn, Cd, Pb, and Ni. The results showed that Cr and Cd in soils were enriched. The relationships between heavy metals and soil properties were assessed by principal component analysis. The results indicated that soil organic matter (SOM) played a fundamental role in controlling Cd and Pb in yellow soil and red loam sites. The Cd was significantly correlated with Pb and Cu, and Cr, Zn, Ni, Fe displayed strong correlations with each other, however, no statistical correlation was found between Cd and Cr. The enrichment factor and geoaccumulation index analyses showed that the soils in the study area were contaminated by Cd. Potential ecological risk analyses indicated that Cd posed a considerable ecological risk in yellow soils, and posed a moderate ecological risk in red loams and red soils.


2017 ◽  
Vol 76 (8) ◽  
pp. 2177-2187 ◽  
Author(s):  
Xu Wang ◽  
Lijun Ren ◽  
Fengchao Jiao ◽  
Wenjie Liu

The concentrations of eight heavy metals (Cr, Hg, As, Pb, Cd, Cu, Zn, Ni) in six river sediment samples were collected for evaluation of the degree of the heavy metals pollution distribution and ecological risk of three main rivers' sediments in Jinan. Multivariate statistical techniques were used to determine the most common pollution sources. The results illustrated that all of the metals in Damatou and Xinfengzhuang sections of the Xiaoqing River were much higher than the background value, and the level of potential ecological risk index was very high. The remaining four sections had a low or moderate degree of ecological risk. Principal component analysis (PCA) showed that all metals, with the exception of As, formed the first component explaining 86.85% of the total variance and industry sources could be considered as the first component, while As alone could be the second component, representing agricultural source. The elements Cr and Zn were grouped together while the remaining six metals formed a separate category. Among all heavy metals, Hg and Cd were the most significant contributors to the pollution. Therefore, the prevention of pollution should pay more attention to controlling the sources, especially Hg and Cd.


Author(s):  
Fang Shen ◽  
Longjiang Mao ◽  
Runxia Sun ◽  
Jijing Du ◽  
Zhihai Tan ◽  
...  

Seven heavy metals (Cr, Mn, Co, Ni, Cu, Zn, Pb) were measured in surface sediments from the Lishui River watershed, an area with increased soil erosion in China. The mean concentrations of heavy metals were 61.20 mg/kg (Cr), 757.15 mg/kg (Mn), 9.39 mg/kg (Co), 25.31 mg/kg (Ni), 22.84 mg/kg (Cu), 91.66 mg/kg (Zn), and 40.19 mg/kg (Pb), respectively. The spatial distribution of heavy metals was site-specific, exhibiting a remarkably high level in the sampling stations with intense agricultural activities (Lixian) and industrial activities (Jinshi). Contamination indexes including contamination factor, pollution load index, nemerow multi-factor index, potential ecological risk index, and human health risk were used to assess the pollution degree of the river sediments. The results indicated the pollution degree of heavy metals decreased in the order of Mn>Pb>Zn>Cr>Cu>Ni>Co. Heavy metals resulted in non-pollution to moderate pollution, with low ecological risk and an acceptable carcinogenic risk caused by Cr and Ni for children and adults. Person’s correlation analysis and principal component analysis, coupled with cluster analysis, revealed that the sediments from the Lishui River were mainly influenced by two sources. Cr, Co, Ni, and Cu were mainly derived from natural sources, while Mn, Zn, and Pb originated from agricultural and industrial activities, mining, and vehicular traffic.


Sign in / Sign up

Export Citation Format

Share Document