scholarly journals Contamination Evaluation and Source Identification of Heavy Metals in the Sediments from the Lishui River Watershed, Southern China

Author(s):  
Fang Shen ◽  
Longjiang Mao ◽  
Runxia Sun ◽  
Jijing Du ◽  
Zhihai Tan ◽  
...  

Seven heavy metals (Cr, Mn, Co, Ni, Cu, Zn, Pb) were measured in surface sediments from the Lishui River watershed, an area with increased soil erosion in China. The mean concentrations of heavy metals were 61.20 mg/kg (Cr), 757.15 mg/kg (Mn), 9.39 mg/kg (Co), 25.31 mg/kg (Ni), 22.84 mg/kg (Cu), 91.66 mg/kg (Zn), and 40.19 mg/kg (Pb), respectively. The spatial distribution of heavy metals was site-specific, exhibiting a remarkably high level in the sampling stations with intense agricultural activities (Lixian) and industrial activities (Jinshi). Contamination indexes including contamination factor, pollution load index, nemerow multi-factor index, potential ecological risk index, and human health risk were used to assess the pollution degree of the river sediments. The results indicated the pollution degree of heavy metals decreased in the order of Mn>Pb>Zn>Cr>Cu>Ni>Co. Heavy metals resulted in non-pollution to moderate pollution, with low ecological risk and an acceptable carcinogenic risk caused by Cr and Ni for children and adults. Person’s correlation analysis and principal component analysis, coupled with cluster analysis, revealed that the sediments from the Lishui River were mainly influenced by two sources. Cr, Co, Ni, and Cu were mainly derived from natural sources, while Mn, Zn, and Pb originated from agricultural and industrial activities, mining, and vehicular traffic.

2020 ◽  
Author(s):  
K. Y. Lim ◽  
N. A. Zakaria ◽  
K. Y. Foo

Abstract The present work is aimed at assessing the aftermath effects of the 2014 flood tragedy on the distribution, pollution status and ecological risks of the heavy metals deposited in the surface river sediment. A series of environmental pollution indexes, specifically the enrichment factor (EF), geo-accumulation index (Igeo), contamination factor (CF), modified degree of contamination (mCd), pollution load index (PLI), potential ecological risk index (PERI) and sediment quality guidelines (SQGs) have been adopted. Results revealed that the freshly deposited sediments collected soon after the flood event were dominated by Cu, Fe, Pb, Ni, Zn, Cr and Cd, with the average concentrations of 38.74, 16,892, 17.71, 4.65, 29.22, 42.36 and 0.29 mg/kg, respectively. According to the heavy metal pollution indexes, Pahang River sediments were moderately to severely contaminated with Pb, Ni, Cu, Zn and Cr, while Cd with the highest risk of 91.09 was the predominant element that illustrated an aesthetic ecological risk to the water body after the tragic flood event. The findings highlighted a critical deterioration of the heavy metals content, driven by the catastrophic flood event, which has drastically altered their geochemical cycles, sedimentary pollution status and biochemical balance of the river's environment.


2017 ◽  
Vol 76 (8) ◽  
pp. 2177-2187 ◽  
Author(s):  
Xu Wang ◽  
Lijun Ren ◽  
Fengchao Jiao ◽  
Wenjie Liu

The concentrations of eight heavy metals (Cr, Hg, As, Pb, Cd, Cu, Zn, Ni) in six river sediment samples were collected for evaluation of the degree of the heavy metals pollution distribution and ecological risk of three main rivers' sediments in Jinan. Multivariate statistical techniques were used to determine the most common pollution sources. The results illustrated that all of the metals in Damatou and Xinfengzhuang sections of the Xiaoqing River were much higher than the background value, and the level of potential ecological risk index was very high. The remaining four sections had a low or moderate degree of ecological risk. Principal component analysis (PCA) showed that all metals, with the exception of As, formed the first component explaining 86.85% of the total variance and industry sources could be considered as the first component, while As alone could be the second component, representing agricultural source. The elements Cr and Zn were grouped together while the remaining six metals formed a separate category. Among all heavy metals, Hg and Cd were the most significant contributors to the pollution. Therefore, the prevention of pollution should pay more attention to controlling the sources, especially Hg and Cd.


Plants ◽  
2020 ◽  
Vol 9 (7) ◽  
pp. 910
Author(s):  
Yasser A. El-Amier ◽  
Giuliano Bonanomi ◽  
Saud L. Al-Rowaily ◽  
Ahmed M. Abd-ElGawad

The use of drainage water in the irrigation of agroecosystem is associated with environmental hazards, and can pose threats to human health. Nine heavy metals (Fe, Mn, Zn, Cu, Co, Cr, Ni, Cd and Pb) along three main drains in the middle Nile Delta were measures in the sediments, roots and shoots of three common macrophytes (Echinochloa stagnina, Phragmites australis and Typha domingensis). The physicochemical characteristics, as well as the enrichment factor (Ef), contamination factor (Cf), geoaccumulation index (Igeo), ecological risk factor (Er), degree of contamination (Dc) and potential ecological risk index (PERI), were determined for sediment. The metal bioaccumulation factor (BAF) and translocation factor (TF) were assessed for plants. Data revealed high contents of Cr, Zn and Cd in the upstream of the drains, while Mn, Cu and Ni were recorded in high concentrations in the downstream. Mn, Cr, Co, Cu, Ni and Zn were recorded to be within EU (2002), CSQGD (2007) and US EPA (1999) limits, while Cd and Pb showed high a ecological risk index. This high concentration of pollutants could be attributed to unremitting industrial activities, which can bioaccumulate in the food chains and cause serious problems for humans. The root of P. australis showed the effective accumulation of most of the elements, while T. domingensis revealed the highest accumulation of Pb. However, the highest BAF shoot value was found in T. domingensis for most of the heavy metals, except for Fe and Zn in P. australis and Mn in E. stagnina. Thus, P. australis could be used as a potential phytoextractor of these hazardous metals, as an eco-friendly and cost-efficient method for remediation of the polluted drains. Further, T. domingensis could be integrated as a hyperaccumulator of Pb. Strict laws and regulations must be taken into consideration by the policymaker against unmanaged industrial activities, particularly near the water streams in the Nile Delta.


2021 ◽  
Author(s):  
Fei Wang ◽  
Xiaoming Ren ◽  
Yang Qiu ◽  
Jiade Cheng ◽  
Yan Chen ◽  
...  

Abstract In this study, nine heavy metals (Cd, Cr, As, Hg, Pb, Cu, Ni, Be, Sb) in typical river sediments of Wujin and Yixing, two cities on the west bank of Taihu Lake, were determined. Variety of statistical methods were applied to analyze the distribution, sources, pollution status and the potential ecological risk of these metals. The results showed that the mean concentrations for most of the heavy metals in sediments exceeded their local background values, except for Hg and Be. Geoaccumulation index (Igeo) and potential ecological risk index (RI) analysis showed the partially serious contaminated status and strong potential ecological risk for Cd in most sites. The highest contamination level was observed in the estuary of Taihu Lake and most of the sediment samples were polluted and under risk. Principal component analysis (PCA), Cluster analysis (CA) and correlation analysis demonstrated that Ni, Sb, Cr and Cu were controlled by industrial sources, whereas the other metals appeared to be influenced by complex origins including industrial, agricultural and natural sources.


Toxics ◽  
2022 ◽  
Vol 10 (1) ◽  
pp. 16
Author(s):  
Xiaomei Su ◽  
Hong Ling ◽  
Dan Wu ◽  
Qingju Xue ◽  
Liqiang Xie

The contamination of heavy metals (Pb, Cr, Hg, Cd, Ni, Cu, Zn, As, and Sb) in the sediments were investigated in Lake Yangcheng, a eutrophic lake in China. Results showed that the average concentrations of each metal in the surface sediments generally exceeded their corresponding background values. Higher values were observed in deeper zones, supporting the retention and accumulation of heavy metals in the core sediments. The spatial distributions of metal averages, pollution load index (PLI), and combined ecological risk index (RI) revealed that ecological risks were highest in the west lake, followed by middle lake, and were lowest in the east section. For the temporal variations of metal contents, the highest concentration was usually observed in the winter. However, the seasonal dynamics of Hg showed a different pattern with higher values in the autumn and lower values in the winter. According to contamination factor (CF), the Hg and Sb contaminations were considerable, while the other metals were moderate contamination. In terms of geoaccumulation index (Igeo) values, sediments were moderately–heavily polluted by Sb and moderately polluted by Hg, Cd, and Ni. Meanwhile, Hg exhibited a considerable health risk, while Cd and Sb were moderate risks, based on single ecological risk index (Er) values. Significant positive correlations among heavy metals and principal component analysis (PCA) indicated that anthropogenic activities were major sources. The source of Sb might be different from other metals, with industrial discharge as the main loading. This study highlighted the urgency of taking measures to prevent Hg, Sb, and Cd pollutions in Lake Yangcheng, especially the west region of this lake.


2021 ◽  
Vol 50 (4) ◽  
pp. 411-420
Author(s):  
Banu Kutlu ◽  
Tahir Özcan ◽  
Gülnaz Özcan

Abstract The ecological risk resulting from the accumulation of some heavy metals in the sediments of Iskenderun Bay was assessed using the following measures: enrichment and contamination factor, pollution load index (PLI), and potential ecological risk index (RI). The concentrations of the studied heavy metals were in the following order: Fe > Ni > Mn > Cr > Zn > Cu > As > Pb > Cd > Hg. Ni and As had the highest EF values. This situation is most likely due to the presence of iron, pesticide, and fertilizer plants in the region. According to the United States Environmental Protection Agency, Ni, As, Mn, and Cr may have harmful effects on faunal communities in sediments. According to the RI, Site 4 was more contaminated and toxic than the other seven study sites, with “moderate” ecological risk. Pearson’s correlation coefficient was determined by multivariate methods – cluster and principal component analysis. As can be inferred from the RI values, the potential toxic effect of As and Ni in the sediments is moderate.


Forests ◽  
2021 ◽  
Vol 12 (7) ◽  
pp. 891
Author(s):  
Qian Zhang ◽  
Guilin Han ◽  
Xingliang Xu

Human agricultural activities have resulted in widespread land degradation and soil contamination in the karst areas. However, the effects of reforestation after agricultural abandonment on the mobility risks and contamination of heavy metals have been rarely reported. In the present study, six soil profiles were selected from cropland and abandoned cropland with reforestation in the Puding karst regions of Southwest China. The Community Bureau of Reference (BCR) sequential extraction method was used to evaluate the compositions of different chemical fractions of soil heavy metals, including Fe, Mn, Cr, Zn, Ni, and Cd. The total contents of Cr, Ni, Zn, Cd, and Mn in the croplands were significantly higher than those in the abandoned croplands. For all soils, Cr, Ni, Zn, and Fe were mainly concentrated in the residual fractions (>85%), whereas Mn and Cd were mostly observed in the non-residual fractions (>65%). The non-residual fractions of Cd, Cr, Ni, and Zn in the croplands were higher than those in the abandoned croplands. These results indicated that the content and mobility of soil heavy metals decreased after reforestation. The individual contamination factor (ICF) and risk assessment code (RAC) showed that Cd contributed to considerable contamination of karst soils. The global contamination factor (GCF) and potential ecological risk index (RI) suggested low contamination and ecological risk of the investigated heavy metals in the croplands, moreover they can be further reduced after reforestation.


2020 ◽  
Vol 53 (2E) ◽  
pp. 36-61
Author(s):  
Ahmed Al-Obeidi

Soil pollution adversely affects the safety and health of the human being. The main objective of the study is to determine the concentrations of heavy metals (As, Cd, Co, Cr, Cu, Fe, Mn, Mo, Ni, Pb and Zn) in surface soil in Al-Hawija, southwestern Kirkuk. Twenty-one samples were collected and analyzed by inductively coupled plasma-mass spectrometry (ICP-MS) to measure the content of heavy metals and assess the soil pollution by using the contamination factor, degree of contamination, geoaccumulation index, pollution load index and ecological risk index (RI). The results indicate that there is high pollution by lead, chromium and copper (78.8, 87.4 and 53.8 mg/kg) respectively, in industrial areas due to anthropogenic sources with the presence of significant ecological risk (Er) of the lead (116) in site S7, due to its high concentrations, while size fraction analysis indicated that all heavy metals are concentrated in the fine parts as a result of adsorption processes by clay minerals.


Water ◽  
2020 ◽  
Vol 12 (2) ◽  
pp. 431
Author(s):  
Liangliang Huang ◽  
Saeed Rad ◽  
Li Xu ◽  
Liangying Gui ◽  
Xiaohong Song ◽  
...  

This research has focused on the source identification, concentration, and ecological risk assessment of eight heavy metals in the largest karst wetland (Huixian) of south China. Numerous samples from superficial soil and sediment within ten representative landuse types were collected and examined, and the results were analyzed using multiple methods. Single pollution index (Pi) results were underpinned by the Geoaccumulation index (Igeo) method, in which Cd was observed as the priority pollutant with the highest contamination degree in this area. As for the most polluted landuse type, via applying Nemerow’s synthetical contamination index (PN) and Potential ecological risk index (RI), the river and rape field posed the highest ecological risks, while moderate for the rest. To quantify the drivers of the contaminants, a principal component analysis (PCA) was carried out and weathering of the watershed’s parent carbonate rocks was found to be the main possible origin, followed by anthropogenic sources induced by agricultural fertilizer. Considering the impacts of these potentially toxic elements on public health, the results of this study are essential to take preventive actions for environmental protection and sustainable development in the region.


Author(s):  
Romanus A. Obasi ◽  
Henry Y. Madukwe

Heavy metals on the soil around an abandoned battery site at Wofun, Ibadan, Southwestern, Nigeria were studied for their ecological and health risks. Ten soil samples collected from the soil around the abandoned battery sites were analyzed using Inductively Coupled Plasma –Mass spectrometry (ICP-MS). The data were evaluated using indices such as contamination factor, enrichment factor, geo-accumulation index and pollution index to determine the ecological and health risks posed by the heavy metals. The results showed an average concentration of Pb (7274.4), V (190.63), Cu (77.52), Zn (53.08) and Co (53) in a decreasing order. The enrichment factor revealed high enrichment for Co (12.30) at site one (S1), and extreme enrichment of Pb (61.12). Zn, Rb and Mo showed no enrichment in the soil. All the sites exhibited extremely high enrichment of Pb except at S10 where the enrichment of Pb was only severe. The results of Igeo indicated that all the sites were strongly to extremely polluted by Pb while S6 is moderately polluted by Co. The rest of the metals do not constitute any pollution threats. An evaluation of the ecological risk index (RI) revealed that the mean Er for Co (13.95), Cu (8.61), and Zn (0.56) indicate low ecological risk as they are less than 40 (Er <40).  Lead (Pb) with Er value of 1818.60 has a very high ecological risk and accounts for most of the ecological risks in the study area. Lead (Pb) being the most toxic and abundant of all the heavy metals analyzed in the study areas was used to evaluate the potential  non-carcinogenic health risk for both children and adults. The hazard index which is the sum of the hazard quotients for children is 26.64 suggesting that non-carcinogenic health risk may occur if there is any form of exposure to the soil. The hazard index for the adult (2.87) indicated a significant potential non-carcinogenic health risk in the study area.


Sign in / Sign up

Export Citation Format

Share Document