scholarly journals Oil-free bearing development for high-speed turbomachinery in distributed energy systems – dynamic and environmental evaluation

2015 ◽  
Vol 5 (1) ◽  
Author(s):  
Eliza Tkacz ◽  
Dorota Kozanecka ◽  
Zbigniew Kozanecki ◽  
Jakub Łagodziński

AbstractModern distributed energy systems, which are used to provide an alternative to or an enhancement of traditional electric power systems, require small size highspeed rotor turbomachinery to be developed. The existing conventional oil-lubricated bearings reveal performance limits at high revolutions as far as stability and power loss of the bearing are concerned. Non-conventional, oil-free bearings lubricated with the machine working medium could be a remedy to this issue. This approach includes a correct design of the machine flow structure and an accurate selection of the bearing type. Chosen aspects of the theoretical and experimental investigations of oil-free bearings and supports; including magnetic, tilting pad, pressurized aerostatic and hydrostatic bearings as well as some applications of oil-free bearing technology for highspeed turbomachinery; are described in the paper.

2021 ◽  
pp. 1-27
Author(s):  
Jian Zhang ◽  
Heejin Cho ◽  
Pedro Mago

Abstract Off-grid concepts for homes and buildings have been a fast-growing trend worldwide in the last few years because of the rapidly dropping cost of renewable energy systems and their self-sufficient nature. Off-grid homes/buildings can be enabled with various energy generation and storage technologies, however, design optimization and integration issues have not been explored sufficiently. This paper applies a multi-objective genetic algorithm (MOGA) optimization to obtain an optimal design of integrated distributed energy systems for off-grid homes in various climate regions. Distributed energy systems consisting of renewable and non-renewable power generation technologies with energy storage are employed to enable off-grid homes/buildings and meet required building electricity demands. In this study, the building types under investigation are residential homes. Multiple distributed energy resources are considered such as combined heat and power systems (CHP), solar photovoltaic (PV), solar thermal collector (STC), wind turbine (WT), as well as battery energy storage (BES) and thermal energy storage (TES). Among those technologies, CHP, PV, and WT are used to generate electricity, which satisfies the building's electric load, including electricity consumed for space heating and cooling. Solar thermal energy and waste heat recovered from CHP are used to partly supply the building's thermal load. Excess electricity and thermal energy can be stored in the BES and TES for later use. The MOGA is applied to determine the best combination of DERs and each component's size to reduce the system cost and carbon dioxide emission for different locations. Results show that the proposed optimization method can be effectively and widely applied to design integrated distributed energy systems for off-grid homes resulting in an optimal design and operation based on a trade-off between economic and environmental performance.


Author(s):  
Jian Zhang ◽  
Heejin Cho ◽  
Pedro Mago

Abstract Off-grid concepts for homes and buildings have been a fast-growing trend worldwide in the last few years because of the rapidly dropping cost of renewable energy systems and their self-sufficient nature. Off-grid homes/buildings can be enabled with various energy generation and storage technologies, however, design optimization and integration issues have not been explored sufficiently. This paper applies a multi-objective genetic algorithm (MOGA) optimization to obtain an optimal design of integrated distributed energy systems for off-grid homes in various U.S. climate regions. Distributed energy systems consisting of renewable and non-renewable power generation technologies with energy storage are employed to enable off-grid homes/buildings and meet required building electricity demands. In this study, the building types under investigation are residential homes. Multiple distributed energy resources are considered such as combined heat and power systems (CHP), solar photovoltaic (PV), solar thermal collector (STC), wind turbine (WT), as well as battery energy storage (BES) and thermal energy storage (TES). Among those technologies, CHP, PV, and WT are used to generate electricity, which satisfies the building’s electric load, including electricity consumed for space heating and cooling. Solar thermal energy and waste heat recovered from CHP are used to partly supply the building’s thermal load. Excess electricity and thermal energy can be stored in the BES and TES for later use. The MOGA is applied to determine the best combination of DERs and each component’s size to reduce the system cost and carbon dioxide emission for different locations. Results show that the proposed optimization method can be effectively applied to design integrated distributed energy systems for off-grid homes resulting in an optimal design and operation based on a tradeoff between economic and environmental performance.


Author(s):  
Sebastian Schulz ◽  
Jörg Reiff-Stephan

Distributed energy systems are a key success factor for the future and self-determined living in undeveloped or emerging regions. Education, culture and economic growth are significantly influenced by energy processes. In order to be able to use a built-up infrastructure, maintenance and condition control of the systems along their entire life cycle are indispensable. However, this can only be achieved if an independent technical condition management system can be established. Event-based data and warnings can be transmitted or retrieved at any time. Due to this, decisions can be made on the basis of the information obtained, which then lead to the maintenance of the targeted functional scope of the power systems. In the following paper, a TCM for pv-based distributed energy systems is presented. It consists of a low performance single board computer which can be connected to a cloud system with mobile communication and transmits essential data.


2013 ◽  
Vol 588 ◽  
pp. 302-309 ◽  
Author(s):  
Zbigniew Kozanecki ◽  
Eliza Tkacz ◽  
Jakub Łagodziński ◽  
Kacper Miazga

In order to reduce the risk of failures, the optimal design selection from the viewpoint of machine reliability must be conducted. Therefore, one should analyze thoroughly the dynamics of the rotor-bearing-casing system in the whole operating range of the machine. The rotating system presented in the paper is supported in non-conventional bearings. The actual study consists in the investigation of new coating materials in the bearing design and the improvement in rotating system dynamics to increase the total efficiency, maintain the cleanness of the working medium and ensure operation of bearings in wide temperature ranges. Despite many advantages, air-foil bearings meet problems of friction and wear in critical moments of their operation, furthermore their complete theoretical model is difficult to establish. Different modeling theories of such bearing dynamic characteristics are shortly described. The current tendency in numerical and experimental methods for diagnostics of rotor support systems of low power rotating machinery is outlined.


2011 ◽  
pp. 998-1003
Author(s):  
D. Vinnikov ◽  
A. Andrijanovitš ◽  
I. Roasto ◽  
T. Lehtla

2021 ◽  
Vol 13 (9) ◽  
pp. 4681
Author(s):  
Khashayar Hamedi ◽  
Shahrbanoo Sadeghi ◽  
Saeed Esfandi ◽  
Mahdi Azimian ◽  
Hessam Golmohamadi

Growing concerns about global greenhouse gas emissions have led power systems to utilize clean and highly efficient resources. In the meantime, renewable energy plays a vital role in energy prospects worldwide. However, the random nature of these resources has increased the demand for energy storage systems. On the other hand, due to the higher efficiency of multi-energy systems compared to single-energy systems, the development of such systems, which are based on different types of energy carriers, will be more attractive for the utilities. Thus, this paper represents a multi-objective assessment for the operation of a multi-carrier microgrid (MCMG) in the presence of high-efficiency technologies comprising compressed air energy storage (CAES) and power-to-gas (P2G) systems. The objective of the model is to minimize the operation cost and environmental pollution. CAES has a simple-cycle mode operation besides the charging and discharging modes to provide more flexibility in the system. Furthermore, the demand response program is employed in the model to mitigate the peaks. The proposed system participates in both electricity and gas markets to supply the energy requirements. The weighted sum approach and fuzzy-based decision-making are employed to compromise the optimum solutions for conflicting objective functions. The multi-objective model is examined on a sample system, and the results for different cases are discussed. The results show that coupling CAES and P2G systems mitigate the wind power curtailment and minimize the cost and pollution up to 14.2% and 9.6%, respectively.


2021 ◽  
Vol 11 (4) ◽  
pp. 1817
Author(s):  
Zheng Li ◽  
Azure Wilson ◽  
Lea Sayce ◽  
Amit Avhad ◽  
Bernard Rousseau ◽  
...  

We have developed a novel surgical/computational model for the investigation of unilat-eral vocal fold paralysis (UVFP) which will be used to inform future in silico approaches to improve surgical outcomes in type I thyroplasty. Healthy phonation (HP) was achieved using cricothyroid suture approximation on both sides of the larynx to generate symmetrical vocal fold closure. Following high-speed videoendoscopy (HSV) capture, sutures on the right side of the larynx were removed, partially releasing tension unilaterally and generating asymmetric vocal fold closure characteristic of UVFP (sUVFP condition). HSV revealed symmetric vibration in HP, while in sUVFP the sutured side demonstrated a higher frequency (10–11%). For the computational model, ex vivo magnetic resonance imaging (MRI) scans were captured at three configurations: non-approximated (NA), HP, and sUVFP. A finite-element method (FEM) model was built, in which cartilage displacements from the MRI images were used to prescribe the adduction, and the vocal fold deformation was simulated before the eigenmode calculation. The results showed that the frequency comparison between the two sides was consistent with observations from HSV. This alignment between the surgical and computational models supports the future application of these methods for the investigation of treatment for UVFP.


2021 ◽  
Vol 301 ◽  
pp. 117324
Author(s):  
Andrea Bartolini ◽  
Stefano Mazzoni ◽  
Gabriele Comodi ◽  
Alessandro Romagnoli

Photonics ◽  
2021 ◽  
Vol 8 (3) ◽  
pp. 81
Author(s):  
Ramón Gutiérrez-Castrejón ◽  
Md Ghulam Saber ◽  
Md Samiul Alam ◽  
Zhenping Xing ◽  
Eslam El-Fiky ◽  
...  

We present a systematic comparison of PAM-2 (NRZ), Duobinary-PAM-2, PAM-4, and Duobinary-PAM-4 (duo-quaternary) signaling in the context of short-reach photonic communications systems using a Mach–Zehnder modulator as transmitter. The effect on system performance with a relaxed and constrained system’s opto-electronic bandwidth is analyzed for bit rates ranging from 20 to 116 Gb/s. In contrast to previous analyses, our approach employs the same experimental and simulation conditions for all modulation formats. Consequently, we were able to confidently determine the performance limits of each format for particular values of bit rate, system bandwidth, transmitter chirp, and fiber dispersion. We demonstrate that Duobinary-PAM-4 is a good signaling choice only for bandwidth-limited systems operating at relatively high speed. Otherwise, PAM-4 represents a more sensible choice. Moreover, our analysis put forward the existence of transition points: specific bit rate values where the BER versus bit rate curves for two different formats cross each other. They indicate the bit rate values where, for specific system conditions, switching from one modulation to another guarantees optimum performance. Their existence naturally led to the proposal of a format-selective transceiver, a component that, according to network conditions, operates with the most adequate modulation format. Since all analyzed modulations share similar implementation details, signaling switching is achieved by simply changing the sampling point and threshold count at the receiver, bringing flexibility to IM/DD-based optical networks.


Sign in / Sign up

Export Citation Format

Share Document