Development, characterization, and in vitro evaluation of adhesive fibrous mat for mucosal propranolol delivery

e-Polymers ◽  
2021 ◽  
Vol 22 (1) ◽  
pp. 58-68
Author(s):  
Graciela Lizeth Pérez-González ◽  
José Manuel Cornejo-Bravo ◽  
Ricardo Vera-Graciano ◽  
Eduardo Sinaí Adan-López ◽  
Luis Jesús Villarreal-Gómez

Abstract This research focuses on the synthesis and adhesive properties of mucoadhesive mats, prepared with poly(vinylic alcohol) as a base polymer for the oromucosal release of propranolol (PRO) by the electrospinning technique. The nanofibers mats were evaluated by scanning electron microscopy (SEM), Fourier-transform infrared spectroscopy, thermogravimetric analysis, and differential scanning calorimetry; in vitro drug entrapment efficiency, degradation time, and adhesion studies were performed. SEM images of the electrospun mats show the correct formation of fibers with a variable diameter and porosity. Thermal studies indicate excellent thermal stability of the scaffolds, The fibrous mats loaded with 10% of the drug exhibit the best thermal stability with decomposition after 450°C. In vitro studies indicate a drug content of 88% loaded in the mats. In the cytotoxicity test, loaded mat presents cell proliferations of 97% and 88% for drug concentrations of 10% an 15%, respectively. To conclude, the formed electrospun adhesive mats exhibited excellent thermal stability, adhesive properties, and drug entrapment efficiency, promising features for a successful drug topical release system on mucosal tissue in the oral cavity.

Author(s):  
Dilip Kumar Gupta ◽  
B K Razdan ◽  
Meenakshi Bajpai

The present study deals with the formulation and evaluation of mefloquine hydrochloride nanoparticles. Mefloquine is a blood schizonticidal quinoline compound, which is indicated for the treatment of mild-to-moderate acute malarial infections caused by mefloquine-susceptible multi-resistant strains of P. falciparum and P. vivax. The purpose of the present work is to minimize the dosing frequency, taste masking toxicity and to improve the therapeutic efficacy by formulating mefloquine HCl nanoparticles. Mefloquine nanoparticles were formulated by emulsion diffusion method using polymer poly(ε-caprolactone) with six different formulations. Nanoparticles were characterized by determining its particle size, polydispersity index, drug entrapment efficiency, drug content, particle morphological character and drug release. The particle size ranged between 100 nm to 240 nm. Drug entrapment efficacy was >95%. The in-vitro release of nanoparticles were carried out which exhibited a sustained release of mefloquine HCl from nanoparticles up to 24 hrs. The results showed that nanoparticles can be a promising drug delivery system for sustained release of mefloquine HCl.


Author(s):  
Nagratna Dhople ◽  
P N Dandag ◽  
A P Gadad ◽  
C K Pandey ◽  
Masthiholimath V S

A gastroretentive sustained release system of itopride hydrochloride was formulated to increase the gastric residence time and modulate its release behavior. Itopride hydrochloride is a prokinetic drug used in the treatment of gastroeosophageal reflux disease, Non-ulcer dyspepsia and as an antiemetic. Hence, itopride hydrochloride beads were prepared by emulsion gelation method by employing low methoxy pectin and sodium alginate as sustained release polymers in three different ratios alone and in combination and sunflower oil was used to enable floating property to the beads. The effect of variation in polymer and their concentration was investigated. The beads were evaluated for production yield, particle size, swelling index, density measurement, buoyancy, drug content, drug entrapment efficiency, in vitro release characteristics and release kinetic study. Based on drug entrapment efficiency, buoyancy, swelling and in vitro release, F9 was selected as the optimized formulation. F9 was further subjected to surface morphology by SEM, in vitro release comparison with marketed formulation, in vivo floating study in rabbits and stability study for 90 days. In vitro release follows zero order and fitted in Korsmeyer peppas model (Non-Fickian release). Therefore, the rate of drug release is due to the combined effect of drug diffusion and polymer swelling. The in vivo X-ray studies revealed that the beads were floating in the rabbit stomach up to 10 hours. Thus, it was concluded that the sustained release formulation containing itopride hydrochloride was found to improve patient compliance, minimize the side effects and decrease the frequency of administration.


Pharmaceutics ◽  
2021 ◽  
Vol 13 (6) ◽  
pp. 765
Author(s):  
Nouran O. Abdelmageed ◽  
Nadia M. Morsi ◽  
Rehab N. Shamma

The application of intra-articular injections in osteoarthritis management has gained great attention lately. In this work, novel intra-articular injectable hyaluronic acid gel-core vesicles (hyaluosomes) loaded with diacerein (DCN), a structural modifying osteoarthritis drug, were developed. A full factorial design was employed to study the effect of different formulation parameters on the drug entrapment efficiency, particle size, and zeta potential. Results showed that the prepared optimized DCN- loaded hyaluosomes were able to achieve high entrapment (90.7%) with a small size (310 nm). The morphology of the optimized hyaluosomes was further examined using TEM, and revealed spherical shaped vesicles with hyaluronic acid in the core. Furthermore, the ability of the prepared DCN-loaded hyaluosomes to improve the in vivo inflammatory condition, and deterioration of cartilage in rats (injected with antigen to induce arthritis) following intra-articular injection was assessed, and revealed superior function on preventing cartilage damage, and inflammation. The inflammatory activity assessed by measuring the rat’s plasma TNF-α and IL-1b levels, revealed significant elevation in the untreated group as compared to the treated groups. The obtained results show that the prepared DCN-loaded hyaluosomes would represent a step forward in the design of novel intra articular injection for management of osteoarthritis.


Author(s):  
Leena Jacob ◽  
Abhilash Tv ◽  
Shajan Abraham

Objective: The study was carried out with an objective to achieve a potential sustained release oral drug delivery system of an antihypertensive drug, Perindopril which is a ACE inhibitor having half life of 2 hours. Perindopril is water soluble drug, so we can control or delay the release rate of drug by using release retarding polymers. This may also decrease the toxic side effects by preventing the high initial concentration in the blood.Method: Microcapsules were prepared by solvent evaporation technique using Eudragit L100 and Ethyl cellulose as a retarding agent to control the release rate and magnesium stearate as an inert dispersing carrier to decrease the interfacial tension between lipophilic and hydrophilic phase. Results: Prepared microcapsules were evaluated for the particle size, percentage yield, drug entrapment efficiency, flow property and in vitro drug release for 12 h. Results indicated that the percentage yield, mean particle size, drug entrapment efficiency and the micrometric properties of the microcapsules was influenced by various drug: polymer ratio. The release rate of microcapsules could be controlled as desired by adjusting the combination ratio of dispersing agents to retarding agents.Conclusion:Perindopril microcapsules can be successfully designed to develop sustained drug delivery, that reduces the dosing frequency and their by one can increase the patient compliance.


2020 ◽  
Vol 19 (7) ◽  
pp. 1351-1358
Author(s):  
Ifeanyi T. Nzekwe ◽  
Anselm C. Okere ◽  
Ifeanyi E. Okoye ◽  
Kokonne E. Ekere ◽  
Adaobi A. Ezenwa ◽  
...  

Purpose: To optimize erythromycin microparticles by in vitro bioassay methods based on its antibacterial activity. Methods: The microparticles were produced by high shear homogenization. The effects of different lipid-to-surfactant ratios were studied. The hydrodynamic size of the different batches was evaluated using dynamic light scattering while bioactive drug load per batch was assessed in agar using bioassay methods. The antimicrobial activities of selected batches were tested ex vivo by determination of reduction in bacteraemia following administration of the microparticles to infected animals. Results: All batches had particles with hydrodynamic sizes < 8.5 microns. Batch 7 with a 2: 5: 2.5 (drug: surfactant: stearic acid) ratio, represents the optimized batch with a hydrodynamic size of 2281 nm, a bioactive drug loading capacity (BLC) of 4.67 ± 0.70 % and bioactive drug entrapment  efficiency (BEE) of 10.51 %. The “microparticle MIC” against Staphylococcus aureus was 1.74 x 10-3 μg/ml. Despite containing lower amounts of erythromycin than the pure sample, the microparticles achieved comparable reduction in bacteraemia, with the optimized batch exhibiting lower variation in bacteraemia than the pure drug. Conclusion: Erythromycin microparticles have been successfully optimized with the aid of bioassay methods which has the advantage that only the bioactive drug concentration is factored in. This method eliminates problems posed by inadequate or non-discriminating chemical assay methods. Keywords: Microparticles, Erythromycin, Gastrointestinal, Bioavailability Antimicrobial, Bioactivity, Encapsulation


2021 ◽  
Vol 11 (2-S) ◽  
pp. 76-81
Author(s):  
Jddtadmin Journal

Thepurpose of the study was to develop and evaluatemucoadhesive microspheres of Budesonide for pulmonary drug delivery systemhaving prolonged residence time and sustained drug release. Microspheres were prepared by emulsificationsolvent evaporation technique using HPMC, carbopol as polymers in varying ratios. The microspheres were evaluated for its percentage yield, drug entrapment efficiency, particle size and shape, in vitro mucoadhesion study and in vitro drug release studies.The FTIR studies revealed no chemical interaction between the drug molecule and polymers and found that drug was compatible with used polymer. The mucoadhesive microspheres showed particle size, drug entrapment efficiency and yield in the ranges of148 - 164 μm, 68.0 - 85.0%and67.52 - 87.25% respectively. In vitro drug release and mucoadhesion study confirms thatformulationF5 was the best formulation as it releases 81.8 % at the end of 12 hr. in controlled manner and percentage mucoadhesion of 75.2 % after 10 hr. This confirms the developed budesonidemucoadhesive microspheres are promising for pulmonary drug delivery system.   Keywords: Budesonide, Mucoadhesion, Microspheres, Drug entrapment efficiency.


Author(s):  
JUNMONI NATH

Objectives: To meet the above aim the following objectives are undertaken: (1) Isolation of starch from jackfruit seeds and formulation of curcumin loaded jackfruit seed starch nanoparticles (2) In vitro evaluations of the drug loaded nanoparticles Methods: Jackfruit seed starch nanoparticles were prepared by Nanoprecipitation technique. In this technique, jackfruit seed starch was mixed with curcumin and acetone solution using a magnetic stirrer at 600 rpm. To the above solution, water were added dropwise and stirred at room temperature until acetone was completely vaporized. Nanoparticles were separated by centrifugation at 4000 rpm after 40 min. Results: Particle size of prepared nanoparticle formulations was found to be 371 to 411.72 nm with PDI of 0.148 to 0.356. The maximum % drug entrapment was found to be 57.34 % with formulation F5. In vitro release studies showed sustained release of drug till 12 h. Conclusion: The prepared nanoparticles were evaluated for its particle size, drug entrapment efficiency, in vitro drug release study, and surface morphology studies by scanning electron microscopy. The results of Fourier transform infrared studies of 1:1 physical mixture of drug and excipients confirmed the absence of incompatibility. Thus, the study concludes that curcumin loaded jackfruit seed starch nanoparticles were developed successfully by nanoprecipitation, which is expected to enhance the oral bioavailability of curcumin.


Author(s):  
Shete Sanmati D. ◽  
Amane Nikita B. ◽  
Desai Punam S. ◽  
Salunkhe .V. R. ◽  
Magdum C. S.

Cognitive disorders (CDs), also known as neurocognitive disorders (NCDs) are a category of mental health disorders that primarily affect cognitive abilities including learning, memory, perception, and problem solving. Global population with depression ranges mostly between 2% and 6% around the world today. Mental health disorders are also attributed to significant number of indirect deaths through suicide and self-harm. The aim of designing a drug delivery system is to enable drug release at a controlled rate over a desired period. nanofibers, with their large specific surface areas, can improve the solubility and dissolution rates of drugs, thereby resulting in fast release of poorly soluble active drugs. Drug release from nanofibers in terms of processing setup and modulate the release kinetics, to achieve site of action with increased plasma half life and resulting increasing residence time of drug in plasma, slowing down rapid renal clearance and helping extended presence of drug at the site of action and also minimize the toxicity of drug. Bacopa monniera an Ayurvedic drug which is mainly used for health practices. Polyvinylpyrrolidone as synthetic polymer was preferably used as a carrier for preparation of nanofibers. Nanofibers mainly prepared by using synthetic polymer because it does not have any toxic effect. Pre-formulation studies were carried out. Experimental design based on trial and error base. Total three batches were prepared using chitosan, cellulose acetate and Polyvinylpyrrolidone.FT-IR Spectroscopy study showed that there was no interaction between drug and polymer. Nanofibers were prepared by using electrospinning method. After preparation of nanofibers were subjected to various evolution parameters includes practical yield, in-vitro drug release, drug entrapment efficiency, SEM,XRD, Zeta Potential, FTIR. The formulations were optimized with respect to In-Vitro drug release and drug entrapment efficiency. Among the all formulations, the Brahmi Extract loaded PVP nanofibers batch F1 containing 300mg of brahmi extract and 600 mg polymer was optimized because this batch showed 97.57% drug release,99.24% drug entrapment efficiency,-26.4mV Zeta potential of the optimized batch which is mainly used to check the stability of the nanofibers formulation. An optimized formulation brahmi extract loaded nanofibers batch F1 is well acceptable, pleasant, palatable and with better compliance.


Author(s):  
Ashwin Kumar Saxena ◽  
Navneet Verma

Objective: The nonsteroidal anti-inflammatory drugs (NSAIDs) are among the most widely used medications in the world because of their demonstrated efficacy in reducing pain and inflammation. The arthritis, pain and inflammation are effectively treated with Lornoxicam, an effective NSAIDs. Because the drug is weakly acidic, it is absorbed easily in the GI tract, and has a short biological half-life of 3 to 5 hours. To meet the objectives of this investigation, we developed a modified release dosage form to provide the delivery of lornoxicam at sustained rate which was designed to prolong its efficacy, reduce dosage frequency, and enhance patient compliance. The present research work was focused on the development of lornoxicam microspheres using natural polymer like okra gum extracted from the pods of Abelmoschus esculentus Linn. and synthetic polymer like ethyl cellulose along with sodium alginate prepared by Ca2+ induced ionic-gelation cross-linking in a complete aqueous environment were successfully formulated. Materials and Method: The microspheres were prepared by using sodium alginate with natural polymer (okra gum) and synthetic polymer (ethyl cellulose) in different ratios by Ca2+ induced ionic-gelation cross-linking. The formulations were optimized on the basis of drug release up to 12 hrs. The physicochemical characteristics of Lornoxicam microspheres such as drug polymer interaction study by Fourier Transform Infrared (FTIR) and further confirmation by Differential Scanning Calorimetry (DSC) and X-ray Diffraction (XRD). The formulated microspheres were characterized for particle size, percentage drug entrapment efficiency, micromeritic properties, surface morphology, percentage swelling index, in-vitro drug release study and mechanism of drug release. Results and Discussion: The FTIR Spectra revealed that there was no interaction between polymer and Lornoxicam which was further confirmed by DSC and XRD. All the formulated Lornoxicam microspheres were spherical in shape confirmed by SEM. The microspheres exhibited good flow properties and also showed high percentage drug entrapment efficiency. All the batches have excellent flow properties with angle of repose in the range of 25.38° ± 0.04 to 30.41° ± 0.07, carr’s index and hausner’s ratios in the range of 10.40% ± 0.018 to 16.66% ± 0.012 and 1.128 ± 0.09 to 2.225 ± 0.01, respectively. The optical microscopic studies revealed that the mean particle size of all the formulations were found in the range of 819.46 ± 0.07 to 959.88 ± 0.02 μm and percentage of drug entrapment were found to be between 72.35 ± 0.02 to 90.00 ± 0.05. Swelling index of prepared microspheres revealed that with increasing the polymer ratios, there were increase in the swelling of prepared microspheres, showing in the range of 600.76 ± 0.42 to 690.11 ± 0.03% for okra gum microspheres at the end of 9 hr in comparison with ethyl cellulose microspheres which ranges between 179.71 ± 0.07 to 227.73 ± 0.05% at the end of 7 hr. In-vitro drug release of prepared microspheres formulation code LSO4 and LSE4 were found to be 88.654 ± 0.25% and 93.971 ± 0.20% respectively at the end of 12 hr. It was suggested that increase in polymer concentration, the drug release from the prepared microspheres got retarded producing sustained release of lornoxicam. In-vitro drug release data obtained were fitted to various release kinetic models to access the suitable mechanism of drug release. Drug release from lornoxicam-loaded alginate-okra gum microspheres followed a pattern that resembled sustained release (Korsemeyer-Peppas model) (R2 = 0.9925 to 0.9951), and n ≤ 1 indicated anomalous diffusion (non-Fickian), supercase-II transport mechanism LSO4 (n = 1.039) over a period of 12 hour underlying in-vitro drug release. Moreover, zero order model (R2 = 0.9720 to 0.9949) were found closer to the best-fit Korsemeyer - Peppas model. In addition, the drug release from lornoxicam-loaded alginate-ethyl cellulose microspheres also follow Korsemeyer-Peppas model (R2 = 0.9741 to 0.9973) with near to Hixson-Crowell model (R2 = 0.9953 to 0.9985) and n < 1 indicated non-Fickian diffusion or anomalous transport mechanism. Moreover, first order model with non-Fickian diffusion mechanism (R2 = 0.9788 to 0.9918) were found closer to the best-fit Korsemeyer-Peppas model/ Hixson-Crowell model. Conclusion: The present study conclusively demonstrates the feasibility of effectively encapsulating Lornoxicam into natural polymer (okra gum) and synthetic polymer (ethyl cellulose) to form potential sustained drug delivery system. In conclusion, drug release over a period of 12 hrs, could be achieved from these prepared microspheres. A pH-dependent swelling and degradation of the optimized microspheres were also observed, which indicates that these microspheres could potentially be used for intestinal drug delivery.


2020 ◽  
Vol 18 ◽  
Author(s):  
Eranti Bhargav ◽  
Yiragamreddy Padmanabha Reddy ◽  
Koteshwara Kunnatur B

Objective : The present study was aimed to improve the permeability of Luliconazole (LZ) and to localize high drug concentrations at skin layers by Quality by Design (QbD) based Nanostructured lipid carriers (NC) based gel. Methods: Quality Target Product Profile was set and Critical Quality attributes were identified. FT-IR and DSC studies confirmed compatibility. Risk assessment was carried out by screening the factors using 27-27-2 fractional factorial design and optimization by Box Behnken design. Cholesterol: Cetyl Palmitate, PEG 200 and probe sonication time were identified as factors, Particle size (<200 nm), PDI (0.4), % Entrapment efficiency (% EE, >80%) and % Cumulative Drug release (% CDR, >95%) as responses. Contour plots, Overlay plots and desirability were utilized to create design space. Results: The quadratic polynomial equations showed that increased lipid content, PEG 200 and optimum sonication time reduced Particle size, PDI, improved % EE and % CDR. The optimized formula was formulated into a gel. Ex-vivo permeation studies performed using pig ear pinna skin revealed that developed LZ NC gel exhibited greater permeation 272.98±8.57 (µg/cm2 ) and 32.11 ±4.7 (µg/cm2 /h) flux than plain drug dispersed gel. Dermatokinetic parameters of LZ NC gel revealed that highly significant amount of LZ was permeated, distributed and transported through the skin layers. The better linear correlations were obtained by LZ permeation through synthetic membrane (in-vitro) and pig ear pinna skin (ex-vivo). Conclusion: The above findings revealed that developed LZ NC gel exhibited better permeation and localization at skin layers in treating fungal infections.


Sign in / Sign up

Export Citation Format

Share Document