scholarly journals Bioassay-guided optimization of lipid-based erythromycin microparticles

2020 ◽  
Vol 19 (7) ◽  
pp. 1351-1358
Author(s):  
Ifeanyi T. Nzekwe ◽  
Anselm C. Okere ◽  
Ifeanyi E. Okoye ◽  
Kokonne E. Ekere ◽  
Adaobi A. Ezenwa ◽  
...  

Purpose: To optimize erythromycin microparticles by in vitro bioassay methods based on its antibacterial activity. Methods: The microparticles were produced by high shear homogenization. The effects of different lipid-to-surfactant ratios were studied. The hydrodynamic size of the different batches was evaluated using dynamic light scattering while bioactive drug load per batch was assessed in agar using bioassay methods. The antimicrobial activities of selected batches were tested ex vivo by determination of reduction in bacteraemia following administration of the microparticles to infected animals. Results: All batches had particles with hydrodynamic sizes < 8.5 microns. Batch 7 with a 2: 5: 2.5 (drug: surfactant: stearic acid) ratio, represents the optimized batch with a hydrodynamic size of 2281 nm, a bioactive drug loading capacity (BLC) of 4.67 ± 0.70 % and bioactive drug entrapment  efficiency (BEE) of 10.51 %. The “microparticle MIC” against Staphylococcus aureus was 1.74 x 10-3 μg/ml. Despite containing lower amounts of erythromycin than the pure sample, the microparticles achieved comparable reduction in bacteraemia, with the optimized batch exhibiting lower variation in bacteraemia than the pure drug. Conclusion: Erythromycin microparticles have been successfully optimized with the aid of bioassay methods which has the advantage that only the bioactive drug concentration is factored in. This method eliminates problems posed by inadequate or non-discriminating chemical assay methods. Keywords: Microparticles, Erythromycin, Gastrointestinal, Bioavailability Antimicrobial, Bioactivity, Encapsulation

2020 ◽  
Vol 20 (3) ◽  
pp. 1321-1331 ◽  
Author(s):  
Yuanyuan Wang ◽  
Yining Yang ◽  
Yibin Yu ◽  
Jinyu Li ◽  
Weisan Pan ◽  
...  

In this study, a novel transferrin modified liposomal dioscin was prepared by the film dispersion method. The transferrin modified dioscin loaded liposomes (Tf-Lip/Dio) were near-spherical in morphology and had an average particle size of 140.07±1.33 nm, a narrow polydispersity index of <0.2 and a relatively stable zeta potential of -23.7±1.16 mV. The drug entrapment efficiency (EE) and drug loading (DL) of Tf-Lip/Dio were 88.94±1.02% and 4.16±0.05%, respectively. Tf-Lip/Dio exhibited a sustained release characterization of approximately 30% of the total dioscin content after 72 h at 37 °C. Tf-Lip/Dio showed higher cytotoxic efficacy after incubation for 24 h in both HeLa cells and HepG2 cells than in nonmodified liposomes. The enhanced antitumor activity of Tf-Lip/Dio might be due to the increased intracellular uptake, which was corroborated by laser scanning confocal microscopy and flow cytometry. Furthermore, hemolysis experiments preliminarily verified the safety of its intravenous injection. Overall, this study demonstrates Tf-Lip/Dio to be a favorable delivery vehicle for dioscin in future cancer therapy.


2020 ◽  
Vol 23 (2) ◽  
pp. 117-124
Author(s):  
Sabirah Ishaque Limpa ◽  
Zahirul Islam ◽  
Md Selim Reza

The purpose of this study was to formulate and assess the mucoadhesive microspheres of bromhexine hydrochloride, a mucolytic agent, using three different types of polymers to achieve gastric retention for improved solubility and bioavailability of the drug. The mucoadhesive formulation was prepared because it dissolved in the pH range of 1 to 4. The characteristics of the prepared microspheres were evaluated by determining the particle size, percent drug loading, surface morphology, swelling behavior, mucoadhesive bond strength and drug entrapment efficiency. The in vitro dissolution was studied using the USP dissolution apparatus I in 0.1N HCl (pH 1.2) media for 8 hours. The release kinetics were analyzed by using zero order, first order, Higuchi, Korsmeyer-Peppas and Hixon-crowell equations to explain the release mechanism from the microspheres. The microspheres exhibited good swelling index and the drug entrapment efficiency was above 79 % for all the formulations. All the formulations showed drug release above 25%, 35%, 50% and 75% after 2 hrs, 4 hrs, 6 hrs and 8 hrs of dissolution respectively. The mucoadhesive bond was observed up to 8 hrs in acidic media. The surface morphology of the prepared microspheres was studied by Scanning Electron Microscope (SEM) and no interaction was found between drug and polymer from the FTIR study. Bangladesh Pharmaceutical Journal 23(2): 117-124, 2020


INDIAN DRUGS ◽  
2016 ◽  
Vol 53 (10) ◽  
pp. 21-26
Author(s):  
S. S Shelake ◽  
◽  
R. M Mhetre ◽  
S. V Patil ◽  
S. S Patil ◽  
...  

Lisinopril is used in the treatment of hypertension and heart failure in myocardial infarction and also in diabetic nephropathy. It is very poorly absorbed from GIT. Intranasal administration is an ideal alternative to the parenteral route for systemic drug delivery. Formulating multiparticulate system with mucoadhesive polymers may provide a significant increase in the nasal residence time. The microspheres prepared by emulsion solvent evaporation method were characterized for encapsulation efficiency, drug loading, particle size, surface morphology, degree of swelling, ex vivo mucoadhesion, drug release and ex vivo diffusion studies. Entrapment efficiency of microspheres was in range of 84.95±0.50% to 97.44±0.61% mucoadhesion was 83.76% and 94.41% and drug release up to 40 minutes was 53.66% to 88.32%. In ex vivo studies, the microspheres showed good bioavailability by nasal route compared to oral drug administration. Both in vitro and in vivo studies conclude that combination of Carbopol and HPMC based microspheres are better than single carbopol-based formulation for the delivery of lisinopril.


Author(s):  
MONA IBRAHIM El-ASSAL ◽  
DALIA SAMUEL

Objective: In an attempt to optimize the anti-Alzheimer effect, rivastigmine-loaded chitosan nanoparticles were developed in order to target of brain through skin permeation. Methods: Rivastigmine-loaded chitosan-tripolyphosphate nanoparticles were prepared by modified ionic gelation method using tween 80 surfactants in different batches with variable chitosan/cross-linker ratios, desirability factors were applied to choose the optimal Nanocarrier and (F15) was selected. Different rivastigmine concentrations were loaded and the highest encapsulation efficiency formulae chosen for further study and evaluated by scanning electron microscopy (SEM), transmission electron microscopy (TEM) and differential scanning calorimetric (DSC). Further, drug loading, Ex-vivo skin permeation of Nano-gel, and kinetic studies were carried out in addition to stability along three months under different temperature. Results: Particle size and polydispersity index showed average 291.6±7.70 to 490.6±7.42 d. nm. and 0.333±0.04 to 0.570±0.023 respectively. The nanoparticles were spherical in shape. Drug concentrations 4% w/w showed the highest drug entrapment efficiency (89.80%) and drug loading (40.81). Ex vivo studies shows that gel formulae of rivastigmine loaded chitosan nanoparticles was not irritant to rat skin had better skin permeation than chitosan nanoparticles aqueous dispersion also capable of releasing the drug in a sustained manner, and follow kinetic diffusion model. Optimum formula F15 was physical and chemical stable. Conclusion: The experimental results showed the suitability of chitosan nanoparticles coated with a surfactant as a potential carrier for permeation through skin and brain, providing sustained delivery of rivastigmine.


2019 ◽  
Vol 9 (01) ◽  
pp. 89-93
Author(s):  
Hariyadi D M ◽  
Hendradi E ◽  
Sharon N

This study reported the properties of microspheres based Carrageenan polymers with Ciprofloxacin HCl antibiotic as a model for dry powder inhalation (DPI). Microspheres Ciprofloxacin-Carrageenan was prepared through ionic gelation process which is a widely used microencapsulation technique in the pharmaceutical industry. Microspheres formula consists of formula using 0.5 and 1% carragenan polymer and 0.2 and 0.6% KCl crosslinker which was named as F1, F2, F3 and F4. Microspheres were characterized for their yield, morphology, entrapment efficiency, drug loading and particle size. Results revealed that ionic gelation technique was a suitable technique for preparation of microspheres as most of the formulations were small in size, spherical in shape with a good yield of 46% to 89%. Based on the data of various evaluations such as drug entrapment efficiency, drug loading and particle size, formula F3 was found as the best DPI formula. Microspheres were successfully prepared and this study can be concluded that the developed microspheres of ciprofloxacin HCl-Carrageenan can be used for pulmonary system to improve the release mechanism and drug bioavailability.


2019 ◽  
Vol 2019 ◽  
pp. 1-13
Author(s):  
Lijun Zhang ◽  
Junfeng Hui ◽  
Pei Ma ◽  
Yu Mi ◽  
Daidi Fan ◽  
...  

Ginsenoside Rg3 (Rg3) is one of three triterpene saponins from red ginseng. It has important structural functions and pharmacological properties. However, due to its poor solubility, low bioavailability, and short half-life in blood circulation, its clinical application was unsuccessful for the treatment of a variety of cancers. In order to overcome this limitation, this study prepared mPEGylation-Rg3 bovine serum albumin nanoparticles (mPEG-Rg3-BSA NPs). The characteristics of the NPs, such as drug entrapment efficiency, drug loading efficiency, surface morphology, thermal stability, and cytotoxicity in vitro, were investigated. The results showed that the appropriate particle size of the obtained NPs was 149.5 nm, the water solubility and stability were better than free Rg3, and the drug entrapment efficiency and drug loading efficiency were 76.56% and 17.65%, respectively. Moreover, the cytotoxicity assays of the mPEG-Rg3-BSA NPs and free Rg3 revealed that the mPEG-Rg3-BSA NPs have greater anticancer effects in HepG2 cells and A549 cells. However, the cytotoxic effect of free Rg3 was higher than the mPEG-Rg3-BSA NPs in L929 cells. The results indicated that using the mPEGylation method and selecting BSA as a carrier to form the nanodrug carrier system were effective for improving the properties of Rg3.


Molecules ◽  
2019 ◽  
Vol 24 (12) ◽  
pp. 2322 ◽  
Author(s):  
Banyi Lu ◽  
Yanting Huang ◽  
Zhongyun Chen ◽  
Jingyi Ye ◽  
Hongyu Xu ◽  
...  

This study aimed to screen an effective flavonoid with promising whitening and antioxidant capacities, and design flavonoid-loaded niosomes to improve its solubility, stability, and penetration. In vitro anti-tyrosinase and 1,1-diphenyl-2-picrylhydrazyl (DPPH) free radical scavenging experiments were conducted to investigate the whitening and antioxidant capacities of several flavonoids, including quercetin, morin, festin, myricetin, rutin, and breviscapine. The conductivity, viscosity, and particle size of Span60-RH40-based formulation of nonionic surfactant vesicles (niosomes) with different mass ratios were studied to determine the most appropriate formulation. Drug-loaded niosomes were characterized for size, zeta potential, morphology, and entrapment efficiency. The photostability, solubility, release behavior, ex vivo drug penetration, and skin retention were also studied. The results showed that quercetin has considerable whitening and antioxidant capacities and Span60-RH40 at a mass ratio of 9:11 forms spherical or oval niosomes of 97.6 ± 3.1 nm with a zeta potential range of 31.1 ± 0.9 mV, and drug entrapment efficiency as high as 87.3 ± 1.6%. Niosomes remarkably improved the solubility and photostability of quercetin. Furthermore, compared to quercetin solution, quercetin-niosomes had the advantages of sustained release and improved transdermal penetration, with skin retention 2.95 times higher than quercetin solution.


Author(s):  
Dilip Kumar Gupta ◽  
B K Razdan ◽  
Meenakshi Bajpai

The present study deals with the formulation and evaluation of mefloquine hydrochloride nanoparticles. Mefloquine is a blood schizonticidal quinoline compound, which is indicated for the treatment of mild-to-moderate acute malarial infections caused by mefloquine-susceptible multi-resistant strains of P. falciparum and P. vivax. The purpose of the present work is to minimize the dosing frequency, taste masking toxicity and to improve the therapeutic efficacy by formulating mefloquine HCl nanoparticles. Mefloquine nanoparticles were formulated by emulsion diffusion method using polymer poly(ε-caprolactone) with six different formulations. Nanoparticles were characterized by determining its particle size, polydispersity index, drug entrapment efficiency, drug content, particle morphological character and drug release. The particle size ranged between 100 nm to 240 nm. Drug entrapment efficacy was >95%. The in-vitro release of nanoparticles were carried out which exhibited a sustained release of mefloquine HCl from nanoparticles up to 24 hrs. The results showed that nanoparticles can be a promising drug delivery system for sustained release of mefloquine HCl.


Author(s):  
Nagratna Dhople ◽  
P N Dandag ◽  
A P Gadad ◽  
C K Pandey ◽  
Masthiholimath V S

A gastroretentive sustained release system of itopride hydrochloride was formulated to increase the gastric residence time and modulate its release behavior. Itopride hydrochloride is a prokinetic drug used in the treatment of gastroeosophageal reflux disease, Non-ulcer dyspepsia and as an antiemetic. Hence, itopride hydrochloride beads were prepared by emulsion gelation method by employing low methoxy pectin and sodium alginate as sustained release polymers in three different ratios alone and in combination and sunflower oil was used to enable floating property to the beads. The effect of variation in polymer and their concentration was investigated. The beads were evaluated for production yield, particle size, swelling index, density measurement, buoyancy, drug content, drug entrapment efficiency, in vitro release characteristics and release kinetic study. Based on drug entrapment efficiency, buoyancy, swelling and in vitro release, F9 was selected as the optimized formulation. F9 was further subjected to surface morphology by SEM, in vitro release comparison with marketed formulation, in vivo floating study in rabbits and stability study for 90 days. In vitro release follows zero order and fitted in Korsmeyer peppas model (Non-Fickian release). Therefore, the rate of drug release is due to the combined effect of drug diffusion and polymer swelling. The in vivo X-ray studies revealed that the beads were floating in the rabbit stomach up to 10 hours. Thus, it was concluded that the sustained release formulation containing itopride hydrochloride was found to improve patient compliance, minimize the side effects and decrease the frequency of administration.


Author(s):  
Rajkumar Aland ◽  
Ganesan M ◽  
P. Rajeswara Rao ◽  
Bhikshapathi D. V. R. N.

The main objective for this investigation is to develop and optimize the solid lipid nanoparticles formulation of acitretin for the effective drug delivery. Acitretin loaded SLNs were prepared by hot homogenization followed by the ultrasonication using Taguchi’s orthogonal array with eight parameters that could affect the particle size and entrapment efficiency. Based on the results from the analyses of the responses obtained from Taguchi design, three different independent variables including surfactant concentration (%), lipid to drug ratio (w/w) and sonication time (s) were selected for further investigation using central composite design. The  lipid Dynasan-116, surfactant poloxomer-188 and co surfactant egg lecithin resulted in better percent drug loading and evaluated for particle size, zeta potential, drug entrapment efficiency, in vitro drug release and stability. All parameters were found to be in an acceptable range. TEM analysis has demonstrated the presence of individual nanoparticles in spherical shape and the results were compatible with particle size measurements.  In vitro drug release of optimized SLN formulation (F2) was found to be 95.63 ± 1.52%, whereas pure drug release was 30.12 after 60 min and the major mechanism of drug release follows first order kinetics release data for optimized formulation (F2) with non-Fickian (anomalous) with a strong correlation coefficient (R2 = 0.94572) of Korsemeyer-Peppas model. The total drug content of acitretin gel formulation was found to 99.86 ± 0.012% and the diameter of gel formulation was 6.9 ± 0.021 cm and that of marketed gel was found to be 5.7 ± 0.06 cm, indicating better spreadability of SLN based gel formulation. The viscosity of gel formulation at 5 rpm was found to be 6.1 x 103 ± 0.4 x 103 cp. The release rate (flux) of acitretin across the membrane and excised skin differs significantly, which indicates about the barrier properties of skin. The flux value for SLN based gel formulation (182.754 ± 3.126 μg cm−2 h−1) was found to be higher than that for marketed gel (122.345 ± 4.786 μg cm−2 h−1). The higher flux and Kp values of SLN based gel suggest that it might be able to enter the skin easily as compared with marketed gel with an advantage of low interfacial tension of the emulsifier film that ensures an excellent contact to the skin. This topically oriented SLN based gel formulation could be useful in providing site-specific dermal treatment of psoriasis


Sign in / Sign up

Export Citation Format

Share Document