Application of dynamic mechanical analysis techniques to bismuth telluride based thermoelectric materials
Abstract Dynamic mechanical analysis (DMA) techniques are commonly applied to characterize polymer-based materials - but little if at all to characterize semiconductor thermoelectric (TE) materials. TE materials may be coupled with polymeric materials in advanced thermoelectric devices, and the knowledge of TE material properties will be useful in the choice of materials for future applications. We have obtained DMA results for both n-type and p-type bismuth telluride based TE materials. We find that tan δ values, indicative of viscoelastic energy dissipation modes, approach the values for glassy or semi-crystalline polymers, and are larger by more than a whole order of magnitude than the tan δ of structural metals. DMA thermal scans show clear hysteresis-type effects and a correlation with differential scanning calorimetry thermal transitions. DMA properties as a function of frequency are briefly discussed. Our results show that DMA techniques are useful in the evaluation of thermophysical and thermomechanical properties of these TE materials and of assembled coolers. The viscoelastic effects we report may provide a damping mechanism for severe stresses inherent to service conditions of the TE coolers.