scholarly journals Inductive Synthesis of Cover-Grammars with the Help of Ant Colony Optimization

2016 ◽  
Vol 41 (4) ◽  
pp. 297-315
Author(s):  
Wojciech Wieczorek

Abstract A cover-grammar of a finite language is a context-free grammar that accepts all words in the language and possibly other words that are longer than any word in the language. In this paper, we describe an efficient algorithm aided by Ant Colony System that, for a given finite language, synthesizes (constructs) a small cover-grammar of the language. We also check its ability to solve a grammatical inference task through the series of experiments.

2020 ◽  
Vol 21 (4) ◽  
Author(s):  
Nikolay Handzhiyski ◽  
Elena Somova

The article describes a new and efficient algorithm for parsing, called Tunnel Parsing, that parses from left to right on the basis of a context-free grammar without left recursion and rules that recognize empty words. The algorithm is applicable mostly for domain-specific languages. In the article, particular attention is paid to the parsing of grammar element repetitions. As a result of the parsing, a statically typed concrete syntax tree is built from top to bottom, that accurately reflects the grammar. The parsing is not done through a recursion, but through an iteration. The Tunnel Parsing algorithm uses the grammars directly without a prior refactoring and is with a linear time complexity for deterministic context-free grammars.


2021 ◽  
Vol 11 (3) ◽  
pp. 1030
Author(s):  
Mateusz Gabor ◽  
Wojciech Wieczorek ◽  
Olgierd Unold

The split-based method in a weighted context-free grammar (WCFG) induction was formalised and verified on a comprehensive set of context-free languages. WCFG is learned using a novel grammatical inference method. The proposed method learns WCFG from both positive and negative samples, whereas the weights of rules are estimated using a novel Inside–Outside Contrastive Estimation algorithm. The results showed that our approach outperforms in terms of F1 scores of other state-of-the-art methods.


2018 ◽  
Vol 7 (3.12) ◽  
pp. 1096
Author(s):  
K Senthil Kumar ◽  
D Malathi

In grammatical inference one aims to find underlying grammar or automaton which explains the target language in some way. Context free grammar which represents type 2 grammar in Chomsky hierarchy has many applications in Formal Language Theory, pattern recognition, Speech recognition, Machine learning , Compiler design and Genetic engineering etc. Identification of unknown Context Free grammar of the target language from positive examples is an extensive area in Grammatical Inference/ Grammar induction. In this paper we propose a novel method which finds the equivalent Chomsky Normal form.  


2020 ◽  
Vol 39 (6) ◽  
pp. 8463-8475
Author(s):  
Palanivel Srinivasan ◽  
Manivannan Doraipandian

Rare event detections are performed using spatial domain and frequency domain-based procedures. Omnipresent surveillance camera footages are increasing exponentially due course the time. Monitoring all the events manually is an insignificant and more time-consuming process. Therefore, an automated rare event detection contrivance is required to make this process manageable. In this work, a Context-Free Grammar (CFG) is developed for detecting rare events from a video stream and Artificial Neural Network (ANN) is used to train CFG. A set of dedicated algorithms are used to perform frame split process, edge detection, background subtraction and convert the processed data into CFG. The developed CFG is converted into nodes and edges to form a graph. The graph is given to the input layer of an ANN to classify normal and rare event classes. Graph derived from CFG using input video stream is used to train ANN Further the performance of developed Artificial Neural Network Based Context-Free Grammar – Rare Event Detection (ACFG-RED) is compared with other existing techniques and performance metrics such as accuracy, precision, sensitivity, recall, average processing time and average processing power are used for performance estimation and analyzed. Better performance metrics values have been observed for the ANN-CFG model compared with other techniques. The developed model will provide a better solution in detecting rare events using video streams.


2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Witold Dyrka ◽  
Marlena Gąsior-Głogowska ◽  
Monika Szefczyk ◽  
Natalia Szulc

Abstract Background Amyloid signaling motifs are a class of protein motifs which share basic structural and functional features despite the lack of clear sequence homology. They are hard to detect in large sequence databases either with the alignment-based profile methods (due to short length and diversity) or with generic amyloid- and prion-finding tools (due to insufficient discriminative power). We propose to address the challenge with a machine learning grammatical model capable of generalizing over diverse collections of unaligned yet related motifs. Results First, we introduce and test improvements to our probabilistic context-free grammar framework for protein sequences that allow for inferring more sophisticated models achieving high sensitivity at low false positive rates. Then, we infer universal grammars for a collection of recently identified bacterial amyloid signaling motifs and demonstrate that the method is capable of generalizing by successfully searching for related motifs in fungi. The results are compared to available alternative methods. Finally, we conduct spectroscopy and staining analyses of selected peptides to verify their structural and functional relationship. Conclusions While the profile HMMs remain the method of choice for modeling homologous sets of sequences, PCFGs seem more suitable for building meta-family descriptors and extrapolating beyond the seed sample.


2021 ◽  
Vol 18 (3) ◽  
pp. 172988142110192
Author(s):  
Songcan Zhang ◽  
Jiexin Pu ◽  
Yanna Si ◽  
Lifan Sun

Path planning of mobile robots in complex environments is the most challenging research. A hybrid approach combining the enhanced ant colony system with the local optimization algorithm based on path geometric features, called EACSPGO, has been presented in this study for mobile robot path planning. Firstly, the simplified model of pheromone diffusion, the pheromone initialization strategy of unequal allocation, and the adaptive pheromone update mechanism have been simultaneously introduced to enhance the classical ant colony algorithm, thus providing a significant improvement in the computation efficiency and the quality of the solutions. A local optimization method based on path geometric features has been designed to further optimize the initial path and achieve a good convergence rate. Finally, the performance and advantages of the proposed approach have been verified by a series of tests in the mobile robot path planning. The simulation results demonstrate that the presented EACSPGO approach provides better solutions, adaptability, stability, and faster convergence rate compared to the other tested optimization algorithms.


Sign in / Sign up

Export Citation Format

Share Document