Microwave Material Properties of Nanoparticle-Doped Nematic Liquid Crystals

Frequenz ◽  
2015 ◽  
Vol 69 (3-4) ◽  
Author(s):  
O. H. Karabey

AbstractThis letter presents the material properties of nanoparticle-doped liquid crystal (LC) mixtures at microwave frequencies. A host (undoped) nematic LC material is doped with several concentrations of ferroelectric, gold and silver nanoparticles. The measurements are conducted at 30 GHz by using a cavity perturbation method. Based on these measurements, relative permittivity and dielectric losses are extracted, then the resultant material tunability and figure-of-merit are calculated. Compared to the host LC, some changes in the electrical parameters of the doped samples are observed, reducing the tunability and material figure-of-merit of all samples. Nevertheless, depending on the shape of the nanoparticles, their impact on the material figure-of-merit is more significant than on the tunability, reducing the figure-of-merit drastically once the tunability changed slightly only.

2015 ◽  
Vol 8 (3) ◽  
pp. 2176-2188 ◽  
Author(s):  
Keisham Nanao Singh

This article reports on the Dielectric Relaxation Studies of two Liquid Crystalline compounds - 7O.4 and 7O.6 - doped with dodecanethiol capped Silver Nanoparticles. The liquid crystal molecules are aligned homeotropically using CTAB. The low frequency relaxation process occurring above 1 MHz is fitted to Cole-Cole formula using the software Dielectric Spectra fit. The effect of the Silver Nanoparticles on the molecular dipole dynamics are discussed in terms of the fitted relaxation times, Cole-Cole distribution parameter and activation energy. The study indicate a local molecular rearrangement of the liquid crystal molecules without affecting the order of the bulk liquid crystal molecules but these local molecules surrounding the Silver Nanoparticles do not contribute to the relaxation process in the studied frequency range. The observed effect on activation energy suggests a change in interaction between the nanoparticles/liquid crystal molecules.


2021 ◽  
Vol 6 (22) ◽  
pp. 5474-5487
Author(s):  
Nishanthi Ezhumalai ◽  
Manivannan Nanthagopal ◽  
Shanmugam Chandirasekar ◽  
Manikandan Elumalai ◽  
Mathivanan Narayanasamy ◽  
...  

2021 ◽  
Vol 9 (6) ◽  
pp. 678
Author(s):  
Kaliyamoorthy Kalidasan ◽  
Nabikhan Asmathunisha ◽  
Venugopal Gomathi ◽  
Laurent Dufossé ◽  
Kandasamy Kathiresan

This work deals with the identification of a predominant thraustochytrid strain, the optimization of culture conditions, the synthesis of nanoparticles, and the evaluation of antioxidant and antimicrobial activities in biomass extracts and nanoparticles. Thraustochytrium kinnei was identified as a predominant strain from decomposing mangrove leaves, and its culture conditions were optimized for maximum biomass production of 13.53 g·L−1, with total lipids of 41.33% and DHA of 39.16% of total fatty acids. Furthermore, the strain was shown to synthesize gold and silver nanoparticles in the size ranges of 10–85 nm and 5–90 nm, respectively. Silver nanoparticles exhibited higher total antioxidant and DPPH activities than gold nanoparticles and methanol extract of the strain. The silver nanoparticles showed higher antimicrobial activity than gold nanoparticles and petroleum ether extract of the strain. Thus, Thraustochytrium kinnei is proven to be promising for synthesis of silver nanoparticles with high antioxidant and antimicrobial activity.


Molecules ◽  
2021 ◽  
Vol 26 (15) ◽  
pp. 4585
Author(s):  
Nicole Jara ◽  
Nataly S. Milán ◽  
Ashiqur Rahman ◽  
Lynda Mouheb ◽  
Daria C. Boffito ◽  
...  

Nanomaterials have supported important technological advances due to their unique properties and their applicability in various fields, such as biomedicine, catalysis, environment, energy, and electronics. This has triggered a tremendous increase in their demand. In turn, materials scientists have sought facile methods to produce nanomaterials of desired features, i.e., morphology, composition, colloidal stability, and surface chemistry, as these determine the targeted application. The advent of photoprocesses has enabled the easy, fast, scalable, and cost- and energy-effective production of metallic nanoparticles of controlled properties without the use of harmful reagents or sophisticated equipment. Herein, we overview the synthesis of gold and silver nanoparticles via photochemical routes. We extensively discuss the effect of varying the experimental parameters, such as the pH, exposure time, and source of irradiation, the use or not of reductants and surfactants, reagents’ nature and concentration, on the outcomes of these noble nanoparticles, namely, their size, shape, and colloidal stability. The hypothetical mechanisms that govern these green processes are discussed whenever available. Finally, we mention their applications and insights for future developments.


RSC Advances ◽  
2021 ◽  
Vol 11 (24) ◽  
pp. 14624-14631
Author(s):  
Pablo Eduardo Cardoso-Avila ◽  
Rita Patakfalvi ◽  
Carlos Rodríguez-Pedroza ◽  
Xochitl Aparicio-Fernández ◽  
Sofía Loza-Cornejo ◽  
...  

Gold and silver nanoparticles were synthesized at room temperature using an aqueous extract from dried rosehips acting as reducing and capping agents with no other chemicals involved.


Sign in / Sign up

Export Citation Format

Share Document