A Compact Via-free Composite Right/Left Handed Low-pass Filter with Improved Selectivity

Frequenz ◽  
2017 ◽  
Vol 71 (7-8) ◽  
Author(s):  
Ashish Kumar ◽  
Dilip Kumar Choudhary ◽  
Raghvendra Kumar Chaudhary

AbstractIn this paper, a compact via-free low pass filter is designed based on composite right/left handed (CRLH) concept. The structure uses open ended concept. Rectangular slots are etched on signal transmission line (TL) to suppress the spurious band without altering the performance and size of filter. The filter is designed for low pass frequency band with cut-off frequency of 3.5 GHz. The proposed metamaterial structure has several prominent advantages in term of selectivity up to 34 dB/GHz and compactness with average insertion loss less than 0.4 dB. It has multiple applications in wireless communication (such as GSM900, global navigation satellite system (1.559–1.610 GHz), GSM1800, WLAN/WiFi (2.4–2.49 GHz) and WiMAX (2.5–2.69 GHz)). The design parameters have been measured and compared with the simulated results and found excellent agreement. The electrical size of proposed filter is 0.14λ

Author(s):  
R S Sharp

The article is about steering control of cars by drivers, concentrating on following the lateral profile of the roadway, which is presumed visible ahead of the car. It builds on previously published work, in which it was shown how the driver's preview of the roadway can be combined with the linear dynamics of a simple car to yield a problem of discrete-time optimal-linear-control-theory form. In that work, it was shown how an optimal ‘driver’ of a linear car can convert the path preview sample values, modelled as deriving from a Gaussian white-noise process, into steering wheel displacement commands to cause the car to follow the previewed path with an attractive compromise between precision and ease. Recognizing that real roadway excitation is not so rich in high frequencies as white-noise, a low-pass filter is added to the system. The white-noise sample values are filtered before being seen by the driver. Numerical results are used to show that the optimal preview control is unaltered by the inclusion of the low-pass filter, whereas the feedback control is affected diminishingly as the preview increases. Then, using the established theoretical basis, new results are generated to show time-invariant optimal preview controls for cars and drivers with different layouts and priorities. Tight and loose controls, representing different balances between tracking accuracy and control effort, are calculated and illustrated through simulation. A new performance criterion with handling qualities implications is set up, involving the minimization of the preview distance required. The sensitivities of this distance to variations in the car design parameters are calculated. The influence of additional rear wheel steering is studied from the viewpoint of the preview distance required and the form of the optimal preview gain sequence. Path-following simulations are used to illustrate relatively high-authority and relatively low-authority control strategies, showing manoeuvring well in advance of a turn under appropriate circumstances. The results yield new insights into driver steering control behaviour and vehicle design optimization. The article concludes with a discussion of research in progress aimed at a further improved understanding of how drivers control their vehicles.


2012 ◽  
Vol 157-158 ◽  
pp. 1139-1143
Author(s):  
Hong Bin Ge ◽  
Yuan Yao ◽  
Jun Sheng Yu ◽  
Xiao Dong Chen

A compact feeding network for a wideband circularly polarized multi-mode Global Navigation Satellite System (GNSS) antenna is presented. Four feed method for the antenna is adopted to suppress the higher modes and increase the 3dB axial ratio (AR) bandwidth. A broadband phase shifter with 0°, 90°, 180°, 270° phase differences using composite right/left-handed transmission line structure combined with novel schiffman phase shifter is analyzed, designed, simulated, implemented and measured in this article.


2019 ◽  
Vol 2019 ◽  
pp. 1-4
Author(s):  
Soonwoo Park ◽  
Heeje Han ◽  
Chanwoo Kim ◽  
Jaemin Bae ◽  
Youngki Cho ◽  
...  

A band-selective power divider is demonstrated for the first time. By replacing lumped element right-handed (RH) and left-handed (LH) transmission lines (TL) in a conventional Wilkinson power divider, it is possible to achieve both power division and filtering simultaneously. By utilizing the positive phase propagation property of an RHTL, which works as a low-pass filter, and the negative phase propagation property of an LHTL, which works as a high-pass filter, the band-selective quarter-wave sections required to construct a Wilkinson power divider are implemented. The fabricated circuit shows an insertion loss in the range 1.7 dB–2.5 dB in the passband, with the circuit dimensions of merely 12 mm by 10 mm.


2017 ◽  
Vol E100.C (10) ◽  
pp. 858-865 ◽  
Author(s):  
Yohei MORISHITA ◽  
Koichi MIZUNO ◽  
Junji SATO ◽  
Koji TAKINAMI ◽  
Kazuaki TAKAHASHI

2016 ◽  
Vol 15 (12) ◽  
pp. 2579-2586
Author(s):  
Adina Racasan ◽  
Calin Munteanu ◽  
Vasile Topa ◽  
Claudia Pacurar ◽  
Claudia Hebedean

2021 ◽  
Vol 2 (1) ◽  
Author(s):  
Jin Wang ◽  
Qin Zhang ◽  
Guanwen Huang

AbstractThe Fractional Cycle Bias (FCB) product is crucial for the Ambiguity Resolution (AR) in Precise Point Positioning (PPP). Different from the traditional method using the ionospheric-free ambiguity which is formed by the Wide Lane (WL) and Narrow Lane (NL) combinations, the uncombined PPP model is flexible and effective to generate the FCB products. This study presents the FCB estimation method based on the multi-Global Navigation Satellite System (GNSS) precise satellite orbit and clock corrections from the international GNSS Monitoring and Assessment System (iGMAS) observations using the uncombined PPP model. The dual-frequency raw ambiguities are combined by the integer coefficients (4,− 3) and (1,− 1) to directly estimate the FCBs. The details of FCB estimation are described with the Global Positioning System (GPS), BeiDou-2 Navigation Satellite System (BDS-2) and Galileo Navigation Satellite System (Galileo). For the estimated FCBs, the Root Mean Squares (RMSs) of the posterior residuals are smaller than 0.1 cycles, which indicates a high consistency for the float ambiguities. The stability of the WL FCBs series is better than 0.02 cycles for the three GNSS systems, while the STandard Deviation (STD) of the NL FCBs for BDS-2 is larger than 0.139 cycles. The combined FCBs have better stability than the raw series. With the multi-GNSS FCB products, the PPP AR for GPS/BDS-2/Galileo is demonstrated using the raw observations. For hourly static positioning results, the performance of the PPP AR with the three-system observations is improved by 42.6%, but only 13.1% for kinematic positioning results. The results indicate that precise and reliable positioning can be achieved with the PPP AR of GPS/BDS-2/Galileo, supported by multi-GNSS satellite orbit, clock, and FCB products based on iGMAS.


Sign in / Sign up

Export Citation Format

Share Document