Proximal gradient method based robust Capon beamforming against large DOA mismatch

Frequenz ◽  
2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Diksha Thakur ◽  
Vikas Baghel ◽  
Salman Raju Talluri

Abstract The Capon beamformer has excellent resolution and interference suppression capability but due to various attributes of practical environment such as inaccurate and/or insufficient information about the source, transmission medium and antenna array its performance deteriorates. To enhance its performance various efforts have been devoted and one effective method is presented here. In this paper, a novel and efficient robust Capon beamformer is devised which is based on proximal gradient method (PGRCB) and the robustness is achieved through remodeling the optimization problem of standard Capon beamformer (SCB). In the proposed PGRCB, the proximal gradient method is used to formulate a new optimization problem in order to obtain the optimum weights of the robust beamformer. The proposed method can achieve better performance as compared to some recent methods in the literature and its effectiveness is verified by the simulation results.

2018 ◽  
Vol 34 (3) ◽  
pp. 449-457
Author(s):  
HUIJUAN WANG ◽  
◽  
HONG-KUN XU ◽  

We improve a recent accelerated proximal gradient (APG) method in [Li, Q., Zhou, Y., Liang, Y. and Varshney, P. K., Convergence analysis of proximal gradient with momentum for nonconvex optimization, in Proceedings of the 34th International Conference on Machine Learning, Sydney, Australia, PMLR 70, 2017] for nonconvex optimization by allowing variable stepsizes. We prove the convergence of the APG method for a composite nonconvex optimization problem under the assumption that the composite objective function satisfies the Kurdyka-Łojasiewicz property.


2015 ◽  
Vol 56 ◽  
pp. 160 ◽  
Author(s):  
Jueyou Li ◽  
Changzhi Wu ◽  
Zhiyou Wu ◽  
Qiang Long ◽  
Xiangyu Wang

Author(s):  
Patrick Knöbelreiter ◽  
Thomas Pock

AbstractIn this work, we propose a learning-based method to denoise and refine disparity maps. The proposed variational network arises naturally from unrolling the iterates of a proximal gradient method applied to a variational energy defined in a joint disparity, color, and confidence image space. Our method allows to learn a robust collaborative regularizer leveraging the joint statistics of the color image, the confidence map and the disparity map. Due to the variational structure of our method, the individual steps can be easily visualized, thus enabling interpretability of the method. We can therefore provide interesting insights into how our method refines and denoises disparity maps. To this end, we can visualize and interpret the learned filters and activation functions and prove the increased reliability of the predicted pixel-wise confidence maps. Furthermore, the optimization based structure of our refinement module allows us to compute eigen disparity maps, which reveal structural properties of our refinement module. The efficiency of our method is demonstrated on the publicly available stereo benchmarks Middlebury 2014 and Kitti 2015.


2021 ◽  
Vol 11 (3) ◽  
pp. 1093
Author(s):  
Jeonghyun Lee ◽  
Sangkyun Lee

Convolutional neural networks (CNNs) have achieved tremendous success in solving complex classification problems. Motivated by this success, there have been proposed various compression methods for downsizing the CNNs to deploy them on resource-constrained embedded systems. However, a new type of vulnerability of compressed CNNs known as the adversarial examples has been discovered recently, which is critical for security-sensitive systems because the adversarial examples can cause malfunction of CNNs and can be crafted easily in many cases. In this paper, we proposed a compression framework to produce compressed CNNs robust against such adversarial examples. To achieve the goal, our framework uses both pruning and knowledge distillation with adversarial training. We formulate our framework as an optimization problem and provide a solution algorithm based on the proximal gradient method, which is more memory-efficient than the popular ADMM-based compression approaches. In experiments, we show that our framework can improve the trade-off between adversarial robustness and compression rate compared to the existing state-of-the-art adversarial pruning approach.


Sensors ◽  
2021 ◽  
Vol 21 (7) ◽  
pp. 2347
Author(s):  
Yanyan Wang ◽  
Lin Wang ◽  
Ruijuan Zheng ◽  
Xuhui Zhao ◽  
Muhua Liu

In smart homes, the computational offloading technology of edge cloud computing (ECC) can effectively deal with the large amount of computation generated by smart devices. In this paper, we propose a computational offloading strategy for minimizing delay based on the back-pressure algorithm (BMDCO) to get the offloading decision and the number of tasks that can be offloaded. Specifically, we first construct a system with multiple local smart device task queues and multiple edge processor task queues. Then, we formulate an offloading strategy to minimize the queue length of tasks in each time slot by minimizing the Lyapunov drift optimization problem, so as to realize the stability of queues and improve the offloading performance. In addition, we give a theoretical analysis on the stability of the BMDCO algorithm by deducing the upper bound of all queues in this system. The simulation results show the stability of the proposed algorithm, and demonstrate that the BMDCO algorithm is superior to other alternatives. Compared with other algorithms, this algorithm can effectively reduce the computation delay.


2013 ◽  
Vol 756-759 ◽  
pp. 3466-3470
Author(s):  
Xu Min Song ◽  
Qi Lin

The trajcetory plan problem of spece reandezvous mission was studied in this paper using nolinear optimization method. The optimization model was built based on the Hills equations. And by analysis property of the design variables, a transform was put forward , which eliminated the equation and nonlinear constraints as well as decreaseing the problem dimensions. The optimization problem was solved using Adaptive Simulated Annealing (ASA) method, and the rendezvous trajectory was designed.The method was validated by simulation results.


2011 ◽  
Vol 2011 ◽  
pp. 1-9 ◽  
Author(s):  
Om Prakash Acharya ◽  
Amalendu Patnaik ◽  
Sachendra N. Sinha

Antenna array pattern nulling is desirable in order to suppress the interfering signals. But in large antenna arrays, there is always a possibility of failure of some elements, which may degrade the radiation pattern with an increase in side lobe level (SLL) and removal of the nulls from desired position. In this paper a correction procedure is introduced based on Particle Swarm Optimization (PSO) which maintains the nulling performance of the failed antenna array. Considering the faulty elements as nonradiating elements, PSO reoptimizes the weights of the remaining radiating elements to reshape the pattern. Simulation results for a Chebyshev array with imposed single, multiple, and broad nulls with failed antenna array are presented.


2021 ◽  
Vol 0 (0) ◽  
pp. 0
Author(s):  
Yi Cui ◽  
Xintong Fang ◽  
Gaoqi Liu ◽  
Bin Li

<p style='text-indent:20px;'>Unmanned Aerial Vehicles (UAVs) have been extensively studied to complete the missions in recent years. The UAV trajectory planning is an important area. Different from the commonly used methods based on path search, which are difficult to consider the UAV state and dynamics constraints, so that the planned trajectory cannot be tracked completely. The UAV trajectory planning problem is considered as an optimization problem for research, considering the dynamics constraints of the UAV and the terrain obstacle constraints during flight. An hp-adaptive Radau pseudospectral method based UAV trajectory planning scheme is proposed by taking the UAV dynamics into account. Numerical experiments are carried out to show the effectiveness and superior of the proposed method. Simulation results show that the proposed method outperform the well-known RRT* and A* algorithm in terms of tracking error.</p>


Author(s):  
Swathi Kommamuri ◽  
P. Sureshbabu

Power system stability improvement by a coordinate Design ofThyristor Controlled Series Compensator (TCSC) controller is addressed in this paper.Particle Swarm Optimization (PSO) technique is employed for optimization of the parameterconstrained nonlinear optimization problem implemented in a simulation environment. The proposed controllers are tested on a weakly connected power system. The non-linear simulation results are presented. The eigenvalue analysis and simulation results show the effectiveness and robustness of proposed controllers to improve the stability performance of power system by efficient damping of low frequency oscillations under various disturbances.


Sign in / Sign up

Export Citation Format

Share Document