Changes of EPR Spectra of Wood Impregnated with Copper-Based Preservatives during Exposure to Several Wood-Rotting Fungi

Holzforschung ◽  
2002 ◽  
Vol 56 (3) ◽  
pp. 229-238 ◽  
Author(s):  
M. Humar ◽  
M. Petrič ◽  
F. Pohleven ◽  
M. Šentjurc ◽  
P. Kalan

SummaryThe tolerance of various fungi against copper was examined. For this purpose, we impregnated Norway spruce (Picea abies) specimens with two different aqueous solutions: copper(II) octanoate with ethanolamine or copper(II) sulfate (cCu= 1.0 × 10−2mol/l). Impregnated and unimpregnated test specimens were then exposed to brown rot fungiAntrodia vaillantiiandGloeophyllum trabeumor to white-rot fungiSchizophyllum communeandTrametes versicolor. After 2, 4, 6 and 12 weeks of exposure Electron Paramagnetic Resonance, Atomic Absorption Spectroscopy and mass loss measurements were performed. The results indicate thatA. vaillantii, G. trabeumandT. versicolortransform copper(II) sulfate in wood into non-soluble, and therefore non-toxic, copper oxalate. The intensity of this reaction depends on the amount of excreted oxalic acid and was the highest forA. vaillantiiand the lowest forT. versicolor. In the presence of ethanolamine, formation of insoluble copper oxalate was not possible and therefore, decay could not proceed. The major portion of copper remained in the wood and only minor amounts were in some cases translocated into nutrient media.

Holzforschung ◽  
2013 ◽  
Vol 67 (7) ◽  
pp. 825-832 ◽  
Author(s):  
Anna-Kaisa Anttila ◽  
Anna Maria Pirttilä ◽  
Hely Häggman ◽  
Anni Harju ◽  
Martti Venäläinen ◽  
...  

Abstract In the last decades, many wood preservatives have been prohibited for their ecotoxicity. The present article is focusing on the conifer-derived condensed tannins as environment-friendly options for the substitution of artificial wood preservatives. Eight different tannin fractions were extracted from spruce cones, spruce barks, and pine cones. The parameters of tannin extraction, such as the methods of purification and concentration of active components in the extracts, have been investigated. The cone and bark extracts were tested for the growth inhibition of eight brown-rot fungi, three white-rot fungi, and four soft-rot fungi in liquid cultures. The cone tannins provided a more efficient fungal growth inhibition than bark tannins. Purification increased the antifungal properties of the extracts. The growth of brown-rot fungi was inhibited by the tannins already at low concentrations. However, the extracts were not effective against the white-rot or soft-rot fungi. More investigation is needed concerning the tannin source and the purification procedure of the extracts before tannins can be considered as an ecologically benign wood preservative.


1983 ◽  
Vol 61 (1) ◽  
pp. 171-173 ◽  
Author(s):  
E. L. Schmidt ◽  
D. W. French

Successive collections of basidiospores, produced in culture from the same hymenial areas of four species of wood decay fungi, were tested for spore germination percentage on malt extract agar under controlled conditions. Spores from white rot fungi retained high germination levels after 5 weeks of spore production, but germination averages for brown rot fungi decreased by more than 50%. Such variation should be considered in wood pathology research using spore germination bioassay.


Holzforschung ◽  
2008 ◽  
Vol 62 (6) ◽  
Author(s):  
Jonathan S. Schilling ◽  
Kaitlyn M. Bissonnette

AbstractWood-degrading fungi commonly grow in contact with calcium (Ca)-containing building materials and may import Ca and iron (Fe) from soil into forest woody debris. For brown rot fungi, imported Ca2+may neutralize oxalate, while Fe3+may facilitate Fenton-based degradation mechanisms. We previously demonstrated, in two independent trials, that degradation of spruce by wood-degrading fungi was not promoted when Ca or Fe were imported from gypsum or metallic Fe, respectively. Here, we tested pine wood with lower endogenous Ca than the spruce blocks used in prior experiments, and included a pure gypsum treatment and one amended with 1% with FeSO4. Electron microscopy with microanalysis verified that brown rot fungiSerpula himantioidesandGloeophyllum trabeumand the white rot fungusIrpex lacteusgrew on gypsum and produced iron-free Ca-oxalate crystals away from the gypsum surface. Wood cation analysis verified significant Fe import by both brown rot isolates in Fe-containing treatments. Wood degradation was highest in Fe-gypsum-containing treatments for all three fungi, although only wood degraded byI. lacteushad significant Ca import. We suggest that Fe impurities may not exacerbate brown rot, and that both brown and white rot fungi may utilize Ca-containing materials.


Holzforschung ◽  
1999 ◽  
Vol 53 (5) ◽  
pp. 491-497 ◽  
Author(s):  
Catherine C. Celimene ◽  
Jessie A. Micales ◽  
Leslie Ferge ◽  
Raymond A. Young

Summary Three stilbenes, pinosylvin (PS), pinosylvin monomethyl ether (PSM) and pinosylvin dimethyl ether (PSD), were extracted from white spruce (Picea glauca), jack pine (Pinus banksiana), and red pine (Pinus resinosa) pine cones, and their structures were confirmed by spectroscopic and chromatographic (HPLC, GC/MS, NMR and FTIR) analysis. PS, PSM, PSD or a 1:1:1 mixture of these stilbenes at concentrations of 0.1 % and 1.0 % were examined for their fungal inhibitory activity by two bioassay methods. Growth of white-rot fungi (Trametes versicolor and Phanerochaete chrysosporium), and brown-rot fungi (Neolentinus lepideus, Gloeophyllum trabeum and Postia placenta) on agar media in the presence of each of the stilbenes or a 1:1:1 mixture inhibited growth of white-rot fungi, but slightly stimulated growth of brown-rot fungi. Soil-block assays, conditions more representative of those found in nature, did not correlate with those from the screening on agar media. PS, PSM, PSD or a 1:1:1 mixture of the three compounds at concentrations of 0.1 % and 1.0 % did not impart any significant decay resistance to white-rot fungi inoculated on a hardwood (Red maple). However under the same conditions, decay resistance was observed against brown-rot fungi on a softwood (Southern yellow pine). It appears that stilbenes at least partially contribute to wood decay resistance against brown-rot fungi.


Author(s):  
Aydan Atalar ◽  
Nurcan Çetinkaya

The efforts to break down the lignocellulosic complex found in the cell wall of straws, besides digestible cellulose and hemicellulose by rumen fermentation, improvement of straw digestibility by the degradation of indigestible lignin fraction of complex by using of biotechnological methods is one of the focus areas of animal nutritionists in recent years. Biological method sare prefer redover other methods due to the environmental friendliness. In the biological treatment methods of lignocellulosic complex, biodiversity of bacteria, enzymes and fungi gives opportunity to select lignin degrading species. Mycobacterium, Arthrobacter and Flavobacterium genre bacteria are used to degrade lignin by bacterial treatment. Lignocellulolytic enzymes isolated from different varieties of fungi are used in enzyme treatment. There are 3 genres of fungus that are white, Brown and soft rot in fungal treatments. Brown rot fungi prefer ably attack cellulose and hemicelluloses, but not lignin. White rot fungi attack the lignin and break up lignol bonds and aromatic ring. White rot fungi break down polysaccharides with hydrolytic enzymes such as cellulase, xylanase, and lignin with oxidative ligninolytic enzymes such as lignin peroxidase and laccase. Because of the fact that the microorganisms that can break down the lignocellulosic materials are the fungi and the cost is low, the application of white rot fungi is possible. In this paper, improvement the lignocellulosic comlex digestibility of straw by biological treatment with the advantage of biodiversity is discussed.


BioResources ◽  
2021 ◽  
Vol 16 (2) ◽  
pp. 3978-3990
Author(s):  
Meng Li ◽  
Zhinan Wang ◽  
Jin Sun ◽  
Wanjuan Chen ◽  
Xianfeng Hu ◽  
...  

The thermogravimetric properties and chemical characterization of rice straw (RS) pretreated by mixed culture of white-rot fungi Phanerochaete chrysosporium (P. chrysosporium) and brown-rot fungi Gloeophyllum trabeum (G. trabeum) were investigated. The mixed fungal pretreatment showed a synergistic effect, which resulted in an energy-efficient pyrolysis of pretreated rice straw. The differences in thermochemical conversion of rice straw before and after fungal pretreatment were investigated using thermogravimetric analysis and the Flynn–Wall–Ozawa (FWO) method. Furthermore, the pretreated samples were also analyzed by Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), and scanning electron microscopy (SEM) to illuminate the changes in chemical composition and pyrolysis behavior. Compared to single fungal pretreatment, the mixed fungal pretreatment worked better and exhibited great potential in biomass pyrolysis.


Author(s):  
Aydan Atalar ◽  
Nurcan Çetinkaya

The efforts to break down the lignocellulosic complex found in the cell wall of straws, besides digestible cellulose and hemicellulose by rumen fermentation, improvement of straw digestibility by the degradation of indigestible lignin fraction of complex by using of biotechnological methods is one of the focus areas of animal nutritionists in recent years. Biological method sare prefer redover other methods due to the environmental friendliness. In the biological treatment methods of lignocellulosic complex, biodiversity of bacteria, enzymes and fungi gives opportunity to select lignin degrading species. Mycobacterium, Arthrobacter and Flavobacterium genre bacteria are used to degrade lignin by bacterial treatment. Lignocellulolytic enzymes isolated from different varieties of fungi are used in enzyme treatment. There are 3 genres of fungus that are white, Brown and soft rot in fungal treatments. Brown rot fungi prefer ably attack cellulose and hemicelluloses, but not lignin. White rot fungi attack the lignin and break up lignol bonds and aromatic ring. White rot fungi break down polysaccharides with hydrolytic enzymes such as cellulase, xylanase, and lignin with oxidative ligninolytic enzymes such as lignin peroxidase and laccase. Because of the fact that the microorganisms that can break down the lignocellulosic materials are the fungi and the cost is low, the application of white rot fungi is possible. In this paper, improvement the lignocellulosic comlex digestibility of straw by biological treatment with the advantage of biodiversity is discussed.


2013 ◽  
Vol 79 (7) ◽  
pp. 2377-2383 ◽  
Author(s):  
Premsagar Korripally ◽  
Vitaliy I. Timokhin ◽  
Carl J. Houtman ◽  
Michael D. Mozuch ◽  
Kenneth E. Hammel

ABSTRACTBasidiomycetes that cause brown rot of wood are essential biomass recyclers in coniferous forest ecosystems and a major cause of failure in wooden structures. Recent work indicates that distinct lineages of brown rot fungi have arisen independently from ligninolytic white rot ancestors via loss of lignocellulolytic enzymes. Brown rot thus proceeds without significant lignin removal, apparently beginning instead with oxidative attack on wood polymers by Fenton reagent produced when fungal hydroquinones or catechols reduce Fe3+in colonized wood. Since there is little evidence that white rot fungi produce these metabolites, one question is the extent to which independent lineages of brown rot fungi may have evolved different Fe3+reductants. Recently, the catechol variegatic acid was proposed to drive Fenton chemistry inSerpula lacrymans, a brown rot member of the Boletales (D. C. Eastwood et al., Science 333:762-765, 2011). We found no variegatic acid in wood undergoing decay byS. lacrymans. We found also that variegatic acid failed to reducein vitrothe Fe3+oxalate chelates that predominate in brown-rotting wood and that it did not drive Fenton chemistryin vitrounder physiological conditions. Instead, the decaying wood contained physiologically significant levels of 2,5-dimethoxyhydroquinone, a reductant with a demonstrated biodegradative role when wood is attacked by certain brown rot fungi in two other divergent lineages, the Gloeophyllales and Polyporales. Our results suggest that the pathway for 2,5-dimethoxyhydroquinone biosynthesis may have been present in ancestral white rot basidiomycetes but do not rule out the possibility that it appeared multiple times via convergent evolution.


2018 ◽  
Vol 84 (16) ◽  
Author(s):  
Gerald N. Presley ◽  
Ellen Panisko ◽  
Samuel O. Purvine ◽  
Jonathan S. Schilling

ABSTRACTWood-degrading fungi use a sequence of oxidative and hydrolytic mechanisms to loosen lignocellulose and then release and metabolize embedded sugars. These temporal sequences have recently been mapped at high resolution using directional growth on wood wafers, revealing previously obscured dynamics as fungi progressively colonize wood. Here, we applied secretomics in the same wafer design to track temporal trends on aspen decayed by fungi with distinct nutritional modes: two brown rot (BR) fungi (Postia placentaandGloeophyllum trabeum) and two white rot (WR) fungi (Stereum hirsutumandTrametes versicolor). We matched secretomic data from three zones of decay (early, middle, and late) with enzyme activities in these zones, and we included measures of total protein and ergosterol as measures of fungal biomass. In line with previous transcriptomics data, the fungi tested showed an initial investment in pectinases and a delayed investment in glycoside hydrolases (GHs). Brown rot fungi also staggered the abundance of some oxidoreductases ahead of GHs to produce a familiar two-step mechanism. White rot fungi, however, showed late-stage investment in pectinases as well, unlike brown rot fungi. Ligninolytic enzyme activities and abundances were also different between the two white rot fungi. Specifically,S. hirsutumligninolytic activity was delayed, which was explained almost entirely by the activity and abundance of five atypical manganese peroxidases, unlike more varied peroxidases and laccases inT. versicolor. These secretomic analyses support brown rot patterns generated via transcriptomics, they reveal distinct patterns among and within rot types, and they link spectral counts with activities to help functionalize these multistrain secretomic data.IMPORTANCEWood decay, driven primarily by wood-degrading basidiomycetes, is an essential component of global carbon cycles, and decay mechanisms are essential for understanding forest ecosystem function. These fungi efficiently consolidate pretreatment and saccharification of wood under mild conditions, making them promising templates for low-cost lignocellulose conversion. Species are categorized as ligninolytic white rots and polysaccharide-selective brown rots, with considerable undescribed variability in decay mechanism that may manifest in the sequential variation in protein secretion over the progression of decay. Here we resolved spatially a temporal progression of decay on intact wood wafers and compared secretome dynamics in two white and two brown rot fungi. We identified several universal mechanistic components among decay types, including early pectinolytic “pretreatment” and later-stage glycoside hydrolase-mediated saccharification. Interspecific comparisons also identified considerable mechanistic diversity within rot types, indicating that there are multiple avenues to facilitate white and brown rots.


Holzforschung ◽  
1999 ◽  
Vol 53 (6) ◽  
pp. 563-568 ◽  
Author(s):  
Frederick Green ◽  
Carol A. Clausen

SummaryHydrolysis of bordered and pinoid pits may be a key event during colonization of wood by decay fungi. Although pits are numerous, studies of pectin-hydrolyzing enzymes in wood decay fungi are scarce, probably because of the relatively low content (less than 4 %) of pectin in wood and because of the primary focus on understanding the degradation of lignified components. Endopolygalacturonase (endo- PG) activity was estimated by cup-plate assay and viscosity reduction of pectin from liquid cultures of fifteen brown-rot and eight white-rot basidiomycetous fungi using sodium polypectate as the carbon source. Oxalic acid was estimated in liquid culture and related to mycelial weight of each fungus. Changes in longitudinal gas permeability of southern pine cores exposed to selected decay fungi in liquid culture were measured to determine the extent of hydrolysis of bordered pits. Twelve of fifteen brown-rot and six of eight white-rot fungi tested were positive for at least one of the polygalacturonase test methods. Accumulation of oxalic acid was detected in thirteen of fifteen brown-rot isolates and none of the white-rot fungi tested. Gas permeability of pine cores increased approximately fourfold among brown-rot fungi tested and eighteenfold among white-rot fungi tested. Scanning electron microscopy revealed bordered pit membrane hydrolysis in cores colonized by white-rot fungi, but only torus damage, weakening and tearing of the pit membranes, was observed in cores exposed to brown-rot fungi. We conclude that both brown- and white-rot decay fungi have the enzymatic capacity to hydrolyze pectin, damage bordered pit membranes, and increase wood permeability during colonization and incipient decay.


Sign in / Sign up

Export Citation Format

Share Document