Synthesis of ethylene maleic anhydride copolymer containing fungicides and evaluation of their effect for wood decay resistance

Holzforschung ◽  
2008 ◽  
Vol 62 (4) ◽  
Author(s):  
George C. Chen

Abstract The aim of the present study was to combat wood decay based on the approach controlled-release biocides from polymers. The possibility of introducing polymer-bonded fungicides into the cell lumens was investigated. The synthesis of ethylene maleic anhydride copolymer containing pentachlorophenol (penta) and 8-hydroxy quinoline (8HQ) in N, N dimethyl formamide is described. It was demonstrated that the penta-bonded acrylate is a poly(ethylene co-dipentachlorophenyl diacrylate), which has a disubstituted pentachlorophenyl group linked through two acrylate ester bonds. The reaction of ethylene maleic anhydride copolymer with 8-hydroxy quinoline leads to products containing 44.8% poly(ethylene co-8-hydroxy quinolinyl acrylate) and 55.2% of unreacted poly(ethylene co-maleic anhydride). Wood impregnated with the polymers described prevented decay by a brown- and white-rot fungus, even after water leaching. Wood treated with the fungicide pentachlorophenol (penta) alone prevented only decay by a brown-rot fungus. An advantage is that high loading of penta in polymer can be achieved. Moreover, there is a slow-release effect on the active agent due to hydrolysis of ester bonds. The decay resistance of wood treated with poly(ethylene co-8-quinolinyl acrylate) was similar to that of wood impregnated with 8-hydroxy quinoline.

Forests ◽  
2020 ◽  
Vol 11 (4) ◽  
pp. 367 ◽  
Author(s):  
Mingming He ◽  
Dandan Xu ◽  
Changgui Li ◽  
Yuzhen Ma ◽  
Xiaohan Dai ◽  
...  

Wood is susceptible to swelling deformation and decay fungi due to moisture adsorption that originates from the dynamic nanopores of the cell wall and the abundant hydroxyl groups in wood components. This study employed as a modifier maleic anhydride (MAn), with the help of acetone as solvent, to diffuse into the wood cell wall, bulk nanopores, and further chemically bond to the hydroxyl groups of wood components, reducing the numbers of free hydroxyl groups and weakening the diffusion of water molecules into the wood cell wall. The derived MAn-bulked wood, compared to the control wood, presented a reduction in water absorptivity (RWA) of ~23% as well as an anti-swelling efficiency (ASE) of ~39% after immersion in water for 228 h, and showed an improvement in decay resistance of 81.42% against white-rot fungus and 69.79% against brown-rot fungus, respectively. The method of combined cell wall bulking and hydroxyl group bonding could effectively improve the dimensional stability and decay resistance with lower doses of modifier, providing a new strategy for wood durability improvement.


Polymers ◽  
2021 ◽  
Vol 13 (18) ◽  
pp. 3173
Author(s):  
Minzhen Bao ◽  
Neng Li ◽  
Yongjie Bao ◽  
Jingpeng Li ◽  
Hao Zhong ◽  
...  

The process parameters significantly influence the preparation and final properties of outdoor wood mats-based engineering composite (OWMEC). During outdoor use, wood composites are susceptible to destruction by rot fungi. Herein, the role of process parameters such as density and resin content on OWMEC resistance to fungal decay was investigated. The poplar OWMEC samples were exposed to white-rot fungus Trametes versicolor and brown-rot fungus Gloeophyllum trabeum for a period of 12 weeks. The chemical composition, crystallinity, and morphology were evaluated to investigate the effect of process parameters on the chemical composition and microstructure of the decayed OWMEC. With an increase in the density and resin content, the mass loss of the decayed OWMEC decreased. The highest antifungal effect against T. versicolor (12.34% mass loss) and G. trabeum (19.43% mass loss) were observed at a density of 1.15 g/m3 and resin content of 13%. As results of the chemical composition and microstructure measurements, the resistance of OWMEC against T. versicolor and G. trabeum fungi was improved remarkably by increasing the density and resin content. The results of this study will provide a technical basis to improve the decay resistance of OWMEC in outdoor environments.


BioResources ◽  
2011 ◽  
Vol 6 (1) ◽  
pp. 606-614 ◽  
Author(s):  
Jing Wang ◽  
Jian Li ◽  
Shujun Li ◽  
Camille Freitag ◽  
J. J. Morrell

Three extractives from China-fir were obtained by a sequential extraction processes with hexane, ethyl acetate, and methanol. The components of the three extractives were analyzed: (1) The gas chromatography-mass spectrometry (GC-MS) analysis showed that in addition to the presence of cedrol, naphthalenes comprised a relatively large percentage of both the hexane extract (10.39%) and the ethyl acetate extract (9.43%). (2) Total phenolic contents analysis showed that phenols took up 6.66 % of the ethyl acetate extract and 22.8% of the methanol extract. All extracts, even with low concentrations, presented fair antifungal activities against two white-rot fungi, Trametes versicolor and Irpex lacteusand two brown-rot fungi, Postia placenta and Gloeophyllum trabeum. Cedrol and naphthalenes were partly responsible for the bioactivities. The synergistic effect of phenols and antifungal compounds also contributed to the wood decay resistance.


Holzforschung ◽  
2004 ◽  
Vol 58 (3) ◽  
pp. 311-315 ◽  
Author(s):  
H.-L. Lee ◽  
G.C. Chen ◽  
R.M. Rowell

Abstract Resistance of wood reacted in situ with phosphorus pentoxide-amine to the brown-rot fungus Gloeophyllum trabeum and white-rot fungus Trametes versicolor was examined. Wood reacted with either octyl, tribromo, or nitro derivatives were more resistant to both fungi. Threshold retention values of phosphoramide-reacted wood to white-rot fungus T. versicolor ranged from 2.9 to 13.3 mmol, while these for brown-rot fungus G. trabeum ranged from 8.1 to 19.2 mmol. Wood reacted with phosphoramide tested to be more resistant to white-rot than brown-rot attack.


Forests ◽  
2020 ◽  
Vol 11 (6) ◽  
pp. 667 ◽  
Author(s):  
Huijun Dong ◽  
Mohsen Bahmani ◽  
Sohrab Rahimi ◽  
Miha Humar

There is an increasing trend in the use of environmentally-friendly materials in wood protection. This includes the use of less toxic active ingredients, as well as better fixation. This study investigates the formulation based on the combination of copper and Saqez resin on the physical and biological resistance properties of poplar wood. Samples were treated by either copper-ethanolamine (Cu/MEA) and/or Saqez resin at various treatment levels. A vacuum pressure procedure was applied. The retention, weight percent gain, water absorption, volumetric swelling, and decay resistance of the samples were then determined. The highest retention and weight percent gain were obtained in the samples treated with the combination of copper-based system and Saqez resin. Additionally, the combination of the copper and Saqez improved the physical properties and decay-resistance against white-rot fungus Trametes versicolor.


Holzforschung ◽  
2006 ◽  
Vol 60 (4) ◽  
pp. 455-458 ◽  
Author(s):  
S. Nami Kartal

Abstract The decay and termite resistance of boric acid (BA)- and di-sodium octoborate tetrahydrate (DOT)-treated sugi sapwood was tested in the context of additional heat treatments at two temperature levels. Heat treatments had no effect on boron release and almost all boron was leached from specimens during a 10-day weathering period. Decay tests with the brown-rot fungus Fomitopsis palustris and the white-rot fungus Trametes versicolor and a 3-week termite resistance test with the subterranean termite Coptotermes formosanus were performed. Heat treatments did not increase the decay resistance of either BA- or DOT-treated specimens against the brown-rot fungus. However, the decay resistance of BA-treated specimens against the same fungus increased after heat treatment at 220°C for 2 h. Heat treatments at 180°C for 4 h and 220°C for 2 h also resulted in increased decay resistance of DOT-treated specimens against T. versi-color. Increased resistance against termite attack was observed only in DOT-treated specimens heated at 180°C for 4 h or at 220°C for 2 h. Accordingly, a synergistic effect between heat and DOT treatments was observed for resistance against white-rot decay and termites.


Holzforschung ◽  
2006 ◽  
Vol 60 (2) ◽  
pp. 210-216 ◽  
Author(s):  
Steffen Donath ◽  
Holger Militz ◽  
Carsten Mai

AbstractDifferent aminofunctional silanes were tested for their suitability to preserve wood against basidiomycetes in a mini-block experiment according to EN 113. High effectiveness against the brown rot fungusConiophora puteanawas maintained over prolonged exposure times of up to 18 weeks. Resistance against the white rot fungusTrametes versicolorwas only enhanced in the initial phase of exposure (6 weeks); after longer exposure times of 18 weeks, considerable mass losses were observed. It was shown that the antifungal resistance was caused by the amino groups of the oligomeric silane systems, while alkyl groups, which influence the water uptake of wood, only had a minor impact. For effective protection, acidic conditions of the treatment solution were important; this promotes the formation of cationised amino groups (ammonium). The silane quaternary ammonium compound (Si-QAC) 3-(trimethoxysilyl)propyldimethyloctadecyl ammonium chloride was applied in combination with an oligomeric silane system to incorporate quaternary ammonium sites into a SiO2matrix via a sol-gel process. This combined treatment significantly enhanced the decay resistance of pine wood againstC. puteana.


2012 ◽  
Vol 94 (5) ◽  
pp. 1303-1311 ◽  
Author(s):  
Sonam Mahajan ◽  
Dragica Jeremic ◽  
Robyn E. Goacher ◽  
Emma R. Master

Sign in / Sign up

Export Citation Format

Share Document