Kallikrein-related peptidase 7 (KLK7) is a proliferative factor that is aberrantly expressed in human colon cancer

2014 ◽  
Vol 395 (9) ◽  
pp. 1075-1086 ◽  
Author(s):  
Francine Walker ◽  
Pascal Nicole ◽  
Abdelhak Jallane ◽  
Antoninus Soosaipillai ◽  
Valentine Mosbach ◽  
...  

Abstract Emerging evidence indicates that serine proteases of the tissue kallikrein-related peptidases family (KLK) are implicated in tumorigenesis. We recently reported the ectopic expression of KLK4 and KLK14 in colonic cancers and their signaling to control cell proliferation. Human tissue kallikrein-related peptidase 7 (KLK7) is often dysregulated in many cancers; however, its role in colon tumorigenesis has not yet been established. In the present study, we analyzed expression of KLK7 in 15 colon cancer cell lines and in 38 human colonic tumors. In many human colon cancer cells, KLK7 mRNA was observed, which leads to KLK7 protein expression and secretion. Furthermore, KLK7 was detected in human colon adenocarcinomas, but it was absent in normal epithelia. KLK7 overexpression in HT29 colon cancer cells upon stable transfection with a KLK7 expression plasmid resulted in increased cell proliferation. Moreover, subcutaneous inoculation of transfected cells into nude mice led to increased tumor growth that was associated with increased tumor cell proliferation as reflected by a positive Ki-67 staining. Our results demonstrate the aberrant expression of KLK7 in colon cancer cells and tissues and its involvement in cell proliferation in vitro and in vivo. Thus, KLK7 may represent a potential therapeutic target for human colon tumorigenesis.

2019 ◽  
Vol 3 (Supplement_1) ◽  
Author(s):  
Seong-Ho Lee ◽  
Jihye Lee ◽  
Thomas Herald ◽  
Sarah Cox ◽  
Leela Noronha ◽  
...  

Abstract Objectives Colon cancer is one of leading causes of cancer mortality worldwide. Sorghum is the fifth most largely cultivated crop for human diet in the world. Most sorghum varieties contain high content of phenolic compounds. The objective of the current study is to evaluate the anti-cancer properties of a novel high phenolic sorghum bran extract prepared under 70% ethanol with 5% citric acid solvent. Methods High phenolic sorghum, accession number PI570481, was grown in Puerto Vallarta, Mexico winter nursery during the 2018 and high phenolic sorghum bran extract was prepared using 70% ethanol with 5% citric acid solvent at room temperature for 2 hours. Human colon cancer cell lines (HCT15, SW480, HCT116 and HT-29) were treated with different doses of high phenolic sorghum bran extract. Cell proliferation and apoptosis was measured using MTS assay and Alexa Fluor 488 Annexin V/Dead Cell Apoptosis system, respectively. Distribution of cell cycle was measured Texas Red channel using BD LSRFortessa system. Cell migration and invasion was measured using wound healing assay and Matrigel, respectively. The luciferase activity of reporter genes was measured using a dual-luciferase assay and Western blot was performed to measure expression of cancer phenotype-associated proteins. Results Cell proliferation was inhibited and apoptosis was induced in the human colon cancer cells treated with high phenolic sorghum bran extract in a dose-dependent manner. High phenolic sorghum bran extract led to S phage arrest. Cell migration and invasion was also repressed in the human colon cancer cells treated with high phenolic sorghum bran extract. The change of cancer phenotypes was associated with up- or down-regulation of regulatory genes. Conclusions The present study expands our understanding on the potential use of high phenolic sorghum bran for prevention of human colon cancer. Funding Sources Cooperative Agreement grant from USDA-ARS to S-HL.


2019 ◽  
Vol 1 (1) ◽  
pp. 191-200 ◽  
Author(s):  
Xian-Yang Qin ◽  
Soichi Kojima

Unsaturated fatty acids are critical in promoting colon tumorigenesis and its stemness. Stearoyl-CoA desaturase-1 (SCD1) is a rate-limiting lipid desaturase associated with colon cancer cell proliferation and metastasis control. This study aims to evaluate the effects of SCD1 inhibition on colon cancer spheroid growth in a three-dimensional cell culture system. An analysis of clinical data showed that increased SCD1 gene expression in colon tumors was negatively correlated with the prognosis. A chemical inhibitor of SCD1, CAY10566, inhibited the growth of colon cancer cells in both monolayer and sphere cultures. In addition, oleic acid administration—a monounsaturated fatty acid generated by the action of SCD1—prevented the suppression of sphere formation by CAY10566. RNA-sequencing data from 382 colon tumor patient samples obtained from the Cancer Genome Atlas database showed that 806 genes were SCD1-associated genes in human colon cancer. Correlation analysis identified the master regulator of lipid homeostasis sterol regulatory element-binding protein 2 (SREBP2) as a prominent transcription factor, whose expression was positively correlated with SCD1 in human colon cancer. SCD1 knockdown using siRNA in colon cancer samples, suppressed SREBP2 gene expression, providing direct evidence that SREBP signaling is under the control of SCD1 in these cells. Pathway analysis in the Ingenuity Pathways Analysis platform showed that SCD1 expression positively correlated with genes involved in multiple pathways, including lipid synthesis and incorporation, cell proliferation, and tissue tumorigenesis. Further network analysis revealed a central role for Myc in the network hierarchy of the SCD1-correlated genes. These findings suggested that SCD1 inhibition would be an effective strategy for suppressing colon cancer spheroid growth, partly through downregulating SREBP-mediated lipid and cholesterol metabolism and Myc signaling.


2013 ◽  
Vol 2013 ◽  
pp. 1-10 ◽  
Author(s):  
Nam-Hui Yim ◽  
Young Pil Jung ◽  
Aeyung Kim ◽  
Choong Je Ma ◽  
Won-Kyung Cho ◽  
...  

Oyaksungisan (OY) is a traditional herbal formula broadly used to treat beriberi, vomiting, diarrhea, and circulatory disturbance in Asian countries from ancient times. The effect of OY on cancer, however, was not reported until now. In this study, we have demonstrated that OY inhibits cell proliferation and induces cell deathviamodulating the autophagy on human colon cancer cells. In HCT116 cells, OY increased the ratio of LC3-II/LC3-I, a marker of autophagy, and treatment with 3-MA, an inhibitor of autophagy, and considerably reduced the formation of autophagosomes. In addition, OY regulated mitogen-activated protein kinase (MAPK) cascades; especially, JNK activation was closely related with autophagy effect by OY in HCT116 cells. Our results indicate that autophagy induction is responsible for the antiproliferative effect by OY, despite the weak apoptosis induction in HCT116 cells. In conclusion, OY might have a potential to be developed as an herbal anticancer remedy.


Molecules ◽  
2020 ◽  
Vol 25 (17) ◽  
pp. 3798
Author(s):  
Nor Isnida Ismail ◽  
Iekhsan Othman ◽  
Faridah Abas ◽  
Nordin H. Lajis ◽  
Rakesh Naidu

The cytotoxic and apoptotic effects of turmeric (Curcuma longa) on colon cancer have been well documented but specific structural modifications of curcumin have been shown to possess greater growth-suppressive potential on colon cancer than curcumin. Therefore, the aim of this study is to identify the anti-cancer properties of curcumin analogue-MS13, a diarylpentanoid on the cytotoxicity, anti-proliferative and apoptotic activity of primary (SW480) and metastatic (SW620) human colon cancer cells. A cell viability assay showed that MS13 has greater cytotoxicity effect on SW480 (EC50: 7.5 ± 2.8 µM) and SW620 (EC50: 5.7 ± 2.4 µM) compared to curcumin (SW480, EC50: 30.6 ± 1.4 µM) and SW620, EC50: 26.8 ± 2.1 µM). Treatment with MS13 at two different doses 1X EC50 and 2X EC50 suppressed the colon cancer cells growth with lower cytotoxicity against normal cells. A greater anti-proliferative effect was also observed in MS13 treated colon cancer cells compared to curcumin at 48 and 72 h. Subsequent analysis on the induction of apoptosis showed that MS13 treated cells exhibited morphological features associated with apoptosis. The findings are also consistent with cellular apoptotic activities shown by increased caspase-3 activity and decreased Bcl-2 protein level in both colon cancer cell lines. In conclusion, MS13 able to suppress colon cancer cell growth by inhibiting cell proliferation and induce apoptosis in primary and metastatic human colon cancer cells.


Sign in / Sign up

Export Citation Format

Share Document