scholarly journals Coordination of stress, Ca2+, and immunogenic signaling pathways by PERK at the endoplasmic reticulum

2016 ◽  
Vol 397 (7) ◽  
pp. 649-656 ◽  
Author(s):  
Alexander R. van Vliet ◽  
Abhishek D. Garg ◽  
Patrizia Agostinis

AbstractThe endoplasmic reticulum (ER) is the main coordinator of intracellular Ca2+signaling, protein synthesis, and folding. The ER is also implicated in the formation of contact sites with other organelles and structures, including mitochondria, plasma membrane (PM), and endosomes, thereby orchestrating through interorganelle signaling pathways, a variety of cellular responses including Ca2+homeostasis, metabolism, and cell death signaling. Upon loss of its folding capacity, incited by a number of stress signals including those elicited by various anticancer therapies, the unfolded protein response (UPR) is launched to restore ER homeostasis. The ER stress sensor protein kinase RNA-like ER kinase (PERK) is a key mediator of the UPR and its role during ER stress has been largely recognized. However, growing evidence suggests that PERK may govern signaling pathways through UPR-independent functions. Here, we discuss emerging noncanonical roles of PERK with particular relevance for the induction of danger or immunogenic signaling and interorganelle communication.

2021 ◽  
Vol 12 ◽  
Author(s):  
Emily M. Nakada ◽  
Rui Sun ◽  
Utako Fujii ◽  
James G. Martin

The accumulation of unfolded/misfolded proteins in the endoplasmic reticulum (ER) causes ER stress and induces the unfolded protein response (UPR) and other mechanisms to restore ER homeostasis, including translational shutdown, increased targeting of mRNAs for degradation by the IRE1-dependent decay pathway, selective translation of proteins that contribute to the protein folding capacity of the ER, and activation of the ER-associated degradation machinery. When ER stress is excessive or prolonged and these mechanisms fail to restore proteostasis, the UPR triggers the cell to undergo apoptosis. This review also examines the overlooked role of post-translational modifications and their roles in protein processing and effects on ER stress and the UPR. Finally, these effects are examined in the context of lung structure, function, and disease.


2017 ◽  
Vol 312 (3) ◽  
pp. H355-H367 ◽  
Author(s):  
M. L. Battson ◽  
D. M. Lee ◽  
C. L. Gentile

The vascular endothelium plays a critical role in cardiovascular homeostasis, and thus identifying the underlying causes of endothelial dysfunction has important clinical implications. In this regard, the endoplasmic reticulum (ER) has recently emerged as an important regulator of metabolic processes. Dysfunction within the ER, broadly termed ER stress, evokes the unfolded protein response (UPR), an adaptive pathway that aims to restore ER homeostasis. Although the UPR is the first line of defense against ER stress, chronic activation of the UPR leads to cell dysfunction and death and has recently been implicated in the pathogenesis of endothelial dysfunction. Numerous risk factors for endothelial dysfunction can induce ER stress, which may in turn disrupt endothelial function via direct effects on endothelium-derived vasoactive substances or by activating other pathogenic cellular networks such as inflammation and oxidative stress. This review summarizes the available data linking ER stress to endothelial dysfunction.


2021 ◽  
Vol 69 (2) ◽  
pp. 309-315
Author(s):  
Ali Riza Koksal ◽  
George Nicholas Verne ◽  
QiQi Zhou

The ability of translated cellular proteins to perform their functions requires their proper folding after synthesis. The endoplasmic reticulum (ER) is responsible for coordinating protein folding and maturation. Infections, genetic mutations, environmental factors and many other conditions can lead to challenges to the ER known as ER stress. Altering ER homeostasis results in accumulation of misfolded or unfolded proteins. To eliminate this problem, a response is initiated by the cell called the unfolded protein response (UPR), which involves multiple signaling pathways. Prolonged ER stress or a dysregulated UPR can lead to premature apoptosis and an exaggerated inflammatory response. Following these discoveries, ER stress was shown to be related to several chronic diseases, such as diabetes mellitus, neurodegenerative disorders, fatty liver disease and inflammatory bowel disease that have not yet been clearly demonstrated pathophysiologically. Here, we review the field and present up-to-date information on the relationship between biological processing, ER stress, UPR, and several chronic diseases.


2018 ◽  
Vol 38 (23) ◽  
Author(s):  
Chandrima Ghosh ◽  
Leena Sathe ◽  
Joel David Paprocki ◽  
Valerica Raicu ◽  
Madhusudan Dey

ABSTRACT Perturbations in endoplasmic reticulum (ER) homeostasis, a condition termed ER stress, activate the unfolded protein response (UPR), an intracellular network of signaling pathways. Recently, we have shown that protein kinase Kin1 and its paralog, Kin2, in the budding yeast Saccharomyces cerevisiae (orthologs of microtubule affinity-regulating kinase in humans) contribute to the UPR function. These Kin kinases contain a conserved kinase domain and an autoinhibitory kinase-associated 1 (KA1) domain separated by a long undefined domain. Here, we show that Kin1 or Kin2 protein requires minimally a kinase domain and an adjacent kinase extension region (KER) for UPR function. We also show that the functional mini-Kin2 protein is predominantly visualized inside the cells and precipitated with the cellular membrane fraction, suggesting its association with the cellular endomembrane system. Furthermore, we show that transphosphorylation of the Kin1 residue T302 and the analogous Kin2 residue T281 within the activation loop are important for full kinase activity. Collectively, our data suggest that, during ER stress, the Kin kinase domain is released from its autoinhibitory KA1 domain and is activated by transphosphorylation.


2020 ◽  
Vol 2020 ◽  
pp. 1-15
Author(s):  
Shengjie Yang ◽  
Min Wu ◽  
Xiaoya Li ◽  
Ran Zhao ◽  
Yixi Zhao ◽  
...  

Endoplasmic reticulum (ER) stress is closely associated with atherosclerosis and related cardiovascular diseases (CVDs). It occurs due to various pathological factors that interfere with ER homeostasis, resulting in the accumulation of unfolded or misfolded proteins in the ER lumen, thereby causing ER dysfunction. Here, we discuss the role of ER stress in different types of cells in atherosclerotic lesions. This discussion includes the activation of apoptotic and inflammatory pathways induced by prolonged ER stress, especially in advanced lesional macrophages and endothelial cells (ECs), as well as common atherosclerosis-related ER stressors in different lesional cells, which all contribute to the clinical progression of atherosclerosis. In view of the important role of ER stress and the unfolded protein response (UPR) signaling pathways in atherosclerosis and CVDs, targeting these processes to reduce ER stress may be a novel therapeutic strategy.


2020 ◽  
Vol 133 (20) ◽  
pp. jcs244855
Author(s):  
Andria A. Lytridou ◽  
Anthi Demetriadou ◽  
Melina Christou ◽  
Louiza Potamiti ◽  
Nikolas P. Mastroyiannopoulos ◽  
...  

ABSTRACTImbalances in endoplasmic reticulum (ER) homeostasis provoke a condition known as ER stress and activate the unfolded protein response (UPR) pathway, an evolutionarily conserved cell survival mechanism. Here, we show that mouse myoblasts respond to UPR activation by stimulating glycogenesis and the formation of α-amylase-degradable, glycogen-containing ER structures. We demonstrate that the glycogen-binding protein Stbd1 is markedly upregulated through the PERK signalling branch of the UPR pathway and is required for the build-up of glycogen structures in response to ER stress activation. In the absence of ER stress, Stbd1 overexpression is sufficient to induce glycogen clustering but does not stimulate glycogenesis. Glycogen structures induced by ER stress are degraded under conditions of glucose restriction through a process that does not depend on autophagosome–lysosome fusion. Furthermore, we provide evidence that failure to induce glycogen clustering during ER stress is associated with enhanced activation of the apoptotic pathway. Our results reveal a so far unknown response of mouse myoblasts to ER stress and uncover a novel specific function of Stbd1 in this process, which may have physiological implications during myogenic differentiation.This article has an associated First Person interview with the first author of the paper.


Author(s):  
Ming Yang ◽  
Shilu Luo ◽  
Xi Wang ◽  
Chenrui Li ◽  
Jinfei Yang ◽  
...  

The endoplasmic reticulum (ER) is one of the most important cellular organelles and is essential for cell homeostasis. Upon external stimulation, ER stress induces the unfolded protein response (UPR) and ER-associated degradation (ERAD) to maintain ER homeostasis. However, persistent ER stress can lead to cell damage. ER-phagy is a selective form of autophagy that ensures the timely removal of damaged ER, thereby protecting cells from damage caused by excessive ER stress. As ER-phagy is a newly identified form of autophagy, many receptor-mediated ER-phagy pathways have been discovered in recent years. In this review, we summarize our understanding of the maintenance of ER homeostasis and describe the receptors identified to date. Finally, the relationships between ER-phagy and diseases are also discussed.


2018 ◽  
pp. MCB.00054-18 ◽  
Author(s):  
Eunice Domínguez-Martín ◽  
Laura Ongay-Larios ◽  
Laura Kawasaki ◽  
Olivier Vincent ◽  
Gerardo Coello ◽  
...  

The Unfolded Protein Response (UPR) is an adaptive pathway that restores cellular homeostasis after endoplasmic reticulum (ER) stress. The ER-resident kinase/ribonuclease Ire1 is the only UPR sensor conserved during evolution. Autophagy, a lysosomal degradative pathway, also contributes to the recovery of cell homeostasis after ER-stress but the interplay between these two pathways is still poorly understood. We describe the Dictyostelium discoideum ER-stress response and characterize its single bonafide Ire1 orthologue, IreA. We found that tunicamycin (TN) triggers a gene-expression reprogramming that increases the protein folding capacity of the ER and alleviates ER protein load. Further, IreA is required for cell-survival after TN-induced ER-stress and is responsible for nearly 40% of the transcriptional changes induced by TN. The response of Dictyostelium cells to ER-stress involves the combined activation of an IreA-dependent gene expression program and the autophagy pathway. These two pathways are independently activated in response to ER-stress but, interestingly, autophagy requires IreA at a later stage for proper autophagosome formation. We propose that unresolved ER-stress in cells lacking IreA causes structural alterations of the ER, leading to a late-stage blockade of autophagy clearance. This unexpected functional link may critically affect eukaryotic cell survival under ER-stress.


Cancers ◽  
2019 ◽  
Vol 11 (11) ◽  
pp. 1793 ◽  
Author(s):  
Nam ◽  
Jeon

The endoplasmic reticulum (ER) is an interconnected organelle that is responsible for the biosynthesis, folding, maturation, stabilization, and trafficking of transmembrane and secretory proteins. Therefore, cells evolve protein quality-control equipment of the ER to ensure protein homeostasis, also termed proteostasis. However, disruption in the folding capacity of the ER caused by a large variety of pathophysiological insults leads to the accumulation of unfolded or misfolded proteins in this organelle, known as ER stress. Upon ER stress, unfolded protein response (UPR) of the ER is activated, integrates ER stress signals, and transduces the integrated signals to relive ER stress, thereby leading to the re-establishment of proteostasis. Intriguingly, severe and persistent ER stress and the subsequently sustained unfolded protein response (UPR) are closely associated with tumor development, angiogenesis, aggressiveness, immunosuppression, and therapeutic response of cancer. Additionally, the UPR interconnects various processes in and around the tumor microenvironment. Therefore, it has begun to be delineated that pharmacologically and genetically manipulating strategies directed to target the UPR of the ER might exhibit positive clinical outcome in cancer. In the present review, we summarize recent advances in our understanding of the UPR of the ER and the UPR of the ER–mitochondria interconnection. We also highlight new insights into how the UPR of the ER in response to pathophysiological perturbations is implicated in the pathogenesis of cancer. We provide the concept to target the UPR of the ER, eventually discussing the potential of therapeutic interventions for targeting the UPR of the ER for cancer treatment.


Author(s):  
Felipe Cabral-Miranda ◽  
Claudio Hetz

AbstractThe conception that protein aggregates composed by misfolded proteins underlies the occurrence of several neurodegenerative diseases suggests that this phenomenon may have a common origin, ultimately driven by disruption of proteostasis control. The unfolded protein response (UPR) embodies a major element of the proteostasis network, which is engaged by endoplasmic reticulum (ER) stress. Chronic ER stress may operate as a possible mechanism of neurodegeneration, contributing to synaptic alterations, neuroinflammation and neuronal loss. In this review we discuss most recent findings relating ER stress and the development of distinct neurodegenerative diseases, and the possible strategies for disease intervention.


Sign in / Sign up

Export Citation Format

Share Document