CD4+ Foxp3+ regulatory T cell-mediated immunomodulation by anti-depressants inhibiting acid sphingomyelinase

2018 ◽  
Vol 399 (10) ◽  
pp. 1175-1182 ◽  
Author(s):  
Jürgen Schneider-Schaulies ◽  
Niklas Beyersdorf

AbstractAcid sphingomyelinase (ASM) is the rate-limiting enzyme cleaving sphingomyelin into ceramide and phosphorylcholin. CD4+Foxp3+regulatory T (Treg) cells depend on CD28 signaling for their survival and function, a receptor that activates the ASM. Both, basal and CD28-induced ASM activities are higher in Treg cells than in conventional CD4+T (Tconv) cells. In ASM-deficient (Smpd1−/−) as compared to wt mice, membranes of T cells contain 7–10-fold more sphingomyelin and two- to three-fold more ceramide, and are in a state of higher order than membranes of T cells from wt mice, which may facilitate their activation. Indeed, the frequency of Treg cells among CD4+T cells in ASM-deficient mice and their suppressive activityin vitroare increased. Moreover,in vitrostimulation of ASM-deficient T cells in the presence of TGF-β and IL-2 leads to higher numbers of induced Treg cells. Pharmacological inhibition of the ASM with a clinically used tricyclic antidepressant such as amitriptyline in mice or in tissue culture of murine or human T cells induces higher frequencies of Treg cells among CD4+T cells within a few days. This fast alteration of the balance between T cell populationsin vitrois due to the elevated cell death of Tconv cells and protection of the CD25highTreg cells by IL-2. Together, these findings suggest that ASM-inhibiting antidepressants, including a fraction of the serotonin re-uptake inhibitors (SSRIs), are moderately immunosuppressive and should be considered for the therapy of inflammatory and autoimmune disorders.


Author(s):  
Taissa M. Kasahara ◽  
Sudhir Gupta

<b><i>Background:</i></b> The regulatory CD8<sup>+</sup> T (CD8<sup>+</sup> Treg) cells play an important role in immune tolerance and have been implicated in several human autoimmune diseases. In this context, follicular helper T (T<sub>FH</sub>) cells contribute by controlling the antibody production. In mice, CD8<sup>+</sup> Treg cells control the number and function of T<sub>FH</sub> cells however the role of human CD8<sup>+</sup> Treg cells on the differentiation of naive CD4<sup>+</sup> T cells into T<sub>FH</sub> cells has not been studied. <b><i>Objectives:</i></b> Here, we evaluated the ability of human CD183<sup>+</sup> CD8<sup>+</sup> Treg cells to suppress T<sub>FH</sub> cell differentiation in vitro. <b><i>Methods:</i></b> Activated CD183<sup>+</sup>CCR7<sup>+</sup>CD45RA<sup>−</sup>CD8<sup>+</sup> Treg and CD183<sup>+</sup>CD25<sup>high</sup>ICOS<sup>+</sup>CD8<sup>+</sup> Treg cells were sorted and cocultured with naïve CD4<sup>+</sup> T cells under T<sub>FH</sub> differentiation condition. The differentiation of T<sub>FH</sub> cells was evaluated by flow cytometry. <b><i>Results:</i></b> Our results showed that activated CD183<sup>+</sup>CD8<sup>+</sup> Treg cells upregulated the expression of Forkhead box P3 transcription factor, inducible T-cell co-stimulator (ICOS), and CD25 compared to CD183<sup>−</sup>CD8<sup>+</sup> T cells. The CD183<sup>+</sup>CD25<sup>high</sup>ICOS<sup>+</sup>CD8<sup>+</sup> Treg cells suppressed T<sub>FH</sub> cell differentiation and CD4<sup>+</sup> T cell proliferation in vitro which was not observed when CD183<sup>+</sup>CCR7<sup>+</sup>CD45RA<sup>−</sup>CD8<sup>+</sup> Treg were cocultured with naïve CD4<sup>+</sup> T cells under T<sub>FH</sub> cell differentiation condition. <b><i>Conclusion:</i></b> These results suggest that CD25<sup>high</sup>ICOS<sup>+</sup>CD183<sup>+</sup>CD8<sup>+</sup> Treg cells may regulate autoimmune and inflammatory responses mediated by T<sub>FH</sub> cells.



2020 ◽  
Vol 8 (Suppl 3) ◽  
pp. A663-A663
Author(s):  
Keegan Cooke ◽  
Juan Estrada ◽  
Jinghui Zhan ◽  
Jonathan Werner ◽  
Fei Lee ◽  
...  

BackgroundNeuroendocrine tumors (NET), including small cell lung cancer (SCLC), have poor prognosis and limited therapeutic options. AMG 757 is an HLE BiTE® immune therapy designed to redirect T cell cytotoxicity to NET cells by binding to Delta-like ligand 3 (DLL3) expressed on the tumor cell surface and CD3 on T cells.MethodsWe evaluated activity of AMG 757 in NET cells in vitro and in mouse models of neuroendocrine cancer in vivo. In vitro, co-cultures of NET cells and human T cells were treated with AMG 757 in a concentration range and T cell activation, cytokine production, and tumor cell killing were assessed. In vivo, AMG 757 antitumor efficacy was evaluated in xenograft NET and in orthotopic models designed to mimic primary and metastatic SCLC lesions. NSG mice bearing established NET were administered human T cells and then treated once weekly with AMG 757 or control HLE BiTE molecule; tumor growth inhibition was assessed. Pharmacodynamic effects of AMG 757 in tumors were also evaluated in SCLC models following a single administration of human T cells and AMG 757 or control HLE BiTE molecule.ResultsAMG 757 induced T cell activation, cytokine production, and potent T cell redirected killing of DLL3-expressing SCLC, neuroendocrine prostate cancer, and other DLL3-expressing NET cell lines in vitro. AMG 757-mediated redirected lysis was specific for DLL3-expressing cells. In patient-derived xenograft and orthotopic models of SCLC, single-dose AMG 757 effectively engaged human T cells administered systemically, leading to a significant increase in the number of human CD4+ and CD8+ T cells in primary and metastatic tumor lesions. Weekly administration of AMG 757 induced significant tumor growth inhibition of SCLC (figure 1) and other NET, including complete regression of established tumors and clearance of metastatic lesions. These findings warranted evaluation of AMG 757 (NCT03319940); the phase 1 study includes dose exploration (monotherapy and in combination with pembrolizumab) and dose expansion (monotherapy) in patients with SCLC (figure 2). A study of AMG 757 in patients with neuroendocrine prostate cancer is under development based on emerging data from the ongoing phase 1 study.Abstract 627 Figure 1AMG 757 Significantly reduced tumor growth in orthotopic SCLC mouse modelsAbstract 627 Figure 2AMG 757 Phase 1 study designConclusionsAMG 757 engages and activates T cells to kill DLL3-expressing SCLC and other NET cells in vitro and induces significant antitumor activity against established xenograft tumors in mouse models. These preclinical data support evaluation of AMG 757 in clinical studies of patients with NET.Ethics ApprovalAll in vivo work was conducted under IACUC-approved protocol #2009-00046.



2013 ◽  
Vol 2013 ◽  
pp. 1-8 ◽  
Author(s):  
Cristian Doñas ◽  
Macarena Fritz ◽  
Valeria Manríquez ◽  
Gabriela Tejón ◽  
María Rosa Bono ◽  
...  

Regulatory T cells are a specific subset of lymphocytes that suppress immune responses and play a crucial role in the maintenance of self-tolerance. They can be generated in the thymus as well as in the periphery through differentiation of naïve CD4+T cells. The forkhead box P3 transcription factor (Foxp3) is a crucial molecule regulating the generation and function of Tregs. Here we show that thefoxp3gene promoter becomes hyperacetylated inin vitrodifferentiated Tregs compared to naïve CD4+T cells. We also show that the histone deacetylase inhibitor TSA stimulated thein vitrodifferentiation of naïve CD4+T cells into Tregs and that this induction was accompanied by a global increase in histone H3 acetylation. Importantly, we also demonstrated that Tregs generated in the presence of TSA have phenotypical and functional differences from the Tregs generated in the absence of TSA. Thus, TSA-generated Tregs showed increased suppressive activities, which could potentially be explained by a mechanism involving the ectonucleotidases CD39 and CD73. Our data show that TSA could potentially be used to enhance the differentiation and suppressive function of CD4+Foxp3+Treg cells.



2021 ◽  
Vol 9 (Suppl 3) ◽  
pp. A185-A185
Author(s):  
Michelle Fleury ◽  
Derrick McCarthy ◽  
Holly Horton ◽  
Courtney Anderson ◽  
Amy Watt ◽  
...  

BackgroundAdoptive cell therapies have shown great promise in hematological malignancies but have yielded little progress in the context of solid tumors. We have developed T cell receptor fusion construct (TRuC®) T cells, which are equipped with an engineered T cell receptor that utilizes the full complement of TCR signaling subunits and recognizes tumor-associated antigens independent of HLA. In clinical trials, mesothelin (MSLN)-targeting TRuC-T cells (TC-210 or gavo-cel) have shown unprecedented results in patients suffering from advanced mesothelioma and ovarian cancer. To potentially increase the depth of response, we evaluated strategies that can promote intra-tumoral T cell persistence and function. Among the common ??-chain cytokines, IL-15 uniquely supports the differentiation and maintenance of memory T cell subsets by limiting terminal differentiation and conferring resistance to IL-2 mediated activation-induced cell death (AICD). In the studies described here, we evaluated the potential of IL-15 as an enhancement to TRuC-T cell phenotype, persistence and function against MSLN+ targets.MethodsPrimary human T cells were activated and transduced with a lentiviral vector encoding an anti-MSLN binder fused to CD3ε alone or co-expressed with a membrane-tethered IL-15rα/IL-15 fusion protein (IL-15fu). Transduced T cells were expanded for 9 days and characterized for expression of the TRuC, IL-15rα and memory phenotype before subjecting them to in vitro functional assays to evaluate cytotoxicity, cytokine production, and persistence. In vivo efficacy was evaluated in MHC class I/II deficient NSG mice bearing human mesothelioma xenografts.ResultsIn vitro, co-expression of the IL-15fu led to similar cytotoxicity and cytokine production as TC-210, but notably enhanced T-cell expansion and persistence upon repeated stimulation with MSLN+ cell lines. Furthermore, the IL-15fu-enhanced TRuC-T cells sustained a significantly higher TCF-1+ population and retained a stem-like phenotype following activation. Moreover, the IL-15fu-enhanced TRuCs demonstrated robust in vivo expansion and intra-tumoral accumulation as measured by ex vivo analysis of TRuC+ cells in the tumor and blood, with a preferential expansion of CD8+ T cells. Finally, IL-15fu-enhanced TRuC-T cells could be observed in the blood long after the tumors were cleared.ConclusionsThese pre-clinical studies suggest that the IL-15fu can synergize with TC-210 to increase the potency and durability of response in patients with MSLN+ tumors.Ethics ApprovalAll animal studies were approved by the respective Institutional Animal Care and Use Committees.



2016 ◽  
Vol 113 (5) ◽  
pp. E568-E576 ◽  
Author(s):  
Jimena Perez-Lloret ◽  
Isobel S. Okoye ◽  
Riccardo Guidi ◽  
Yashaswini Kannan ◽  
Stephanie M. Coomes ◽  
...  

There is a paucity of new therapeutic targets to control allergic reactions and forestall the rising trend of allergic diseases. Although a variety of immune cells contribute to allergy, cytokine-secreting αβ+CD4+ T-helper 2 (TH2) cells orchestrate the type-2–driven immune response in a large proportion of atopic asthmatics. To identify previously unidentified putative targets in pathogenic TH2 cells, we performed in silico analyses of recently published transcriptional data from a wide variety of pathogenic TH cells [Okoye IS, et al. (2014) Proc Natl Acad Sci USA 111(30):E3081–E3090] and identified that transcription intermediary factor 1 regulator-alpha (Tif1α)/tripartite motif-containing 24 (Trim24) was predicted to be active in house dust mite (HDM)- and helminth-elicited Il4gfp+αβ+CD4+ TH2 cells but not in TH1, TH17, or Treg cells. Testing this prediction, we restricted Trim24 deficiency to T cells by using a mixed bone marrow chimera system and found that T-cell–intrinsic Trim24 is essential for HDM-mediated airway allergy and antihelminth immunity. Mechanistically, HDM-elicited Trim24−/− T cells have reduced expression of many TH2 cytokines and chemokines and were predicted to have compromised IL-1–regulated signaling. Following this prediction, we found that Trim24−/− T cells have reduced IL-1 receptor (IL-1R) expression, are refractory to IL-1β–mediated activation in vitro and in vivo, and fail to respond to IL-1β–exacerbated airway allergy. Collectively, these data identify a previously unappreciated Trim24-dependent requirement for IL-1R expression on TH2 cells and an important nonredundant role for T-cell–intrinsic Trim24 in TH2-mediated allergy and antihelminth immunity.



2019 ◽  
Vol 20 (18) ◽  
pp. 4323 ◽  
Author(s):  
Salvo Danilo Lombardo ◽  
Emanuela Mazzon ◽  
Maria Sofia Basile ◽  
Giorgia Campo ◽  
Federica Corsico ◽  
...  

Tetraspanins are a conserved family of proteins involved in a number of biological processes including, cell–cell interactions, fertility, cancer metastasis and immune responses. It has previously been shown that TSPAN32 knockout mice have normal hemopoiesis and B-cell responses, but hyperproliferative T cells. Here, we show that TSPAN32 is expressed at higher levels in the lymphoid lineage as compared to myeloid cells. In vitro activation of T helper cells via anti-CD3/CD28 is associated with a significant downregulation of TSPAN32. Interestingly, engagement of CD3 is sufficient to modulate TSPAN32 expression, and its effect is potentiated by costimulation with anti-CD28, but not anti-CTLA4, -ICOS nor -PD1. Accordingly, we measured the transcriptomic levels of TSPAN32 in polarized T cells under Th1 and Th2 conditions and TSPAN32 resulted significantly reduced as compared with unstimulated cells. On the other hand, in Treg cells, TSPAN32 underwent minor changes upon activation. The in vitro data were finally translated into the context of multiple sclerosis (MS). Encephalitogenic T cells from Myelin Oligodendrocyte Glycoprotein (MOG)-Induced Experimental Autoimmune Encephalomyelitis (EAE) mice showed significantly lower levels of TSPAN32 and increased levels of CD9, CD53, CD82 and CD151. Similarly, in vitro-activated circulating CD4 T cells from MS patients showed lower levels of TSPAN32 as compared with cells from healthy donors. Overall, these data suggest an immunoregulatory role for TSPAN32 in T helper immune response and may represent a target of future immunoregulatory therapies for T cell-mediated autoimmune diseases.



1996 ◽  
Vol 183 (6) ◽  
pp. 2481-2488 ◽  
Author(s):  
H W Mittrücker ◽  
A Shahinian ◽  
D Bouchard ◽  
T M Kündig ◽  
T W Mak

We used CD28-deficient mice to analyze the importance of CD28 costimulation for the response against Staphylococcal enterotoxin B (SEB) in vivo. CD28 was necessary for the strong expansion of V beta 8+ T cells, but not for deletion. The lack of expansion was not due to a failure of SEB to activate V beta 8+ T cells, as V beta 8+ T cells from both CD28-/- and CD28+/+ mice showed similar phenotypic changes within the first 24 h after SEB injection and cell cycle analysis showed that an equal percentage of V beta 8+ T cells started to proliferate. However, the phenotype and the state of proliferation of V beta 8+ T cells was different at later time points. Furthermore, in CD28-/- mice injection with SEB led to rapid induction of unresponsiveness in SEB responsive T cells, indicated by a drastic reduction of proliferation after secondary SEB stimulation in vitro. Unresponsiveness could also be demonstrated in vivo, as CD28-/- mice produced only marginal amounts of TNF alpha after rechallenge with SEB. In addition CD28-/- mice were protected against a lethal toxic shock induced by a second injection with SEB. Our results indicate that CD28 costimulation is crucial for the T cell-mediated toxicity of SEB and demonstrate that T cell stimulation in the absence of CD28 costimulation induces unresponsiveness in vivo.



2015 ◽  
Vol 26 (15) ◽  
pp. 2845-2857 ◽  
Author(s):  
Magdalena Walecki ◽  
Florian Eisel ◽  
Jörg Klug ◽  
Nelli Baal ◽  
Agnieszka Paradowska-Dogan ◽  
...  

CD4+CD25+Foxp3+ regulatory T (Treg) cells are able to inhibit proliferation and cytokine production in effector T-cells and play a major role in immune responses and prevention of autoimmune disease. A master regulator of Treg cell development and function is the transcription factor Foxp3. Several cytokines, such as TGF-β and IL-2, are known to regulate Foxp3 expression as well as methylation of the Foxp3 locus. We demonstrated previously that testosterone treatment induces a strong increase in the Treg cell population both in vivo and in vitro. Therefore we sought to investigate the direct effect of androgens on expression and regulation of Foxp3. We show a significant androgen-dependent increase of Foxp3 expression in human T-cells from women in the ovulatory phase of the menstrual cycle but not from men and identify a functional androgen response element within the Foxp3 locus. Binding of androgen receptor leads to changes in the acetylation status of histone H4, whereas methylation of defined CpG regions in the Foxp3 gene is unaffected. Our results provide novel evidence for a modulatory role of androgens in the differentiation of Treg cells.



Blood ◽  
2005 ◽  
Vol 106 (11) ◽  
pp. 3323-3323
Author(s):  
Philipp J. Jost ◽  
Uta Ferch ◽  
Stephanie Weiss ◽  
Stephanie Leeder ◽  
Olaf Gross ◽  
...  

Abstract Development of immature T cells in the thymus requires signals through the clonotypic T cell receptor (TCR). Thymocytes expressing a functionally inactive or autoreactive TCR are deleted via apoptosis (negative selection). Thymocytes expressing a functionally active but not autoreactive TCR are selected through inhibition of cell death (positive selection). Deregulation of this process is likely to result in autoimmunity or lymphomagenesis of T cells. The intracellular mechanisms by which the balance between TCR-dependent survival and apoptosis are regulated are largely unknown. A central regulator of survival and apoptosis in the immune system is the transcription factor NF-κB. Activation of NF-κB in mature T-cells requires the adaptor proteins Bcl10 and Malt1. Using gene-targeted mice deficient for Bcl10 or Malt1, we show that Bcl10 and Malt1 are also required for TCR-induced NF-κB activation in immature T cells. Furthermore, to elucidate the process of T cell selection within the thymus, we have crossed Bcl10 or Malt1 deficient mice into mice with genetic backgrounds expressing defined TCR transgenes. Using specific peptide agonists of these TCR transgenes, we show that neither in vivo nor in vitro development into single positive (SP) CD4 or CD8 positive T cells is altered in Bcl10 or Malt1 deficient mice. Absolute numbers and ratio of SP T cells found within the thymus or in peripheral lymphnodes of transgenic animals are normal. These findings indicate that Bcl10 and Malt1 activate NF-κB in thymocytes but are dispensable for maturation of immature T cells in this model system.



Blood ◽  
2007 ◽  
Vol 110 (11) ◽  
pp. 4642-4642
Author(s):  
Xin Wang ◽  
Wenbo Zhao ◽  
Yanxia Liu ◽  
Ying Li

Abstract Polycythaemia vera (PV) is a clonal disorder arising from a pluripotent hematopoietic progenitor cell. The etiology of PV remains unknown and there is no consensus as to the optimal therapy for this disorder. T regulatory (Treg) cells play a vital role in the maintenance of self-tolerance, control of auto-immunity and regulation of T-cell homeostasis, and they modulate overall immune responses against a variety of pathogens. Recent studies revealed that Treg cells play a crucial role in the process of hematopoietic activity. However, the effect of Treg cells in PV has not been reported. The Treg cells might participate in the dysfunction of T-cell immunity in PV. The profile and function of Treg cells in PV patients were explored in this study. Peripheral blood was withdrawn from 21 PV patients (Female 8 ; Male 13), as well as 25 age-matched healthy donors (F 9 ; M 16) as controls. All samples were taken after informed consent and collected from PV patients prior to treatment. Diagnoses of PV were made according to clinical and laboratory criteria. The peripheral blood mononuclear cells (PBMCs) were subjected to flow cytometry analyses after labeling with anti-CD4, anti-CD25, and anti-Foxp3 antibodies. Real-time PCR and Western blotting were also performed to identify quantitative FOXP3 mRNA expression and protein level in the PBMCs from PV in comparison to controls. The relationships between the percentage of Treg cells, the expressions for quantitative mRNA and protein, with the clinical data were assessed. The percentage of CD4+ T-cells was significant decreased in the group of PV than in normal control (28.7±7.07% vs 38.6±8.38%, p<0.05). But the percentage of CD4+CD25+FOXP3+ T-cells (Treg cells) in PV patients was significantly increased when compared to the control (10.93±4.02% vs 5.86±1.99%, p<0.05). Moreover, the quantitative mRNA expression of FOXP3 (64.23±18.52 vs 16.06±4.78, p<0.05) and protein expression of FOXP3 (0.74±0.16 vs 0.62±0.10, p<0.05)) were significantly enhanced in PV patients (shown in Figure 1). In conclusion, we showed that patients with PV have enhanced percentage of Treg cells in their peripheral blood. This was substantiated further with the finding that overexpressions of FOXP3 in PV both in mRNA and protein level. These results highlight important Treg-cell abnormalities in patients with PV because natural Treg cells are significantly increased in number and function. The underlying mechanism is still undefined, but the increased frequency and function of Treg cells might account for the abnormal T cell immunity in PV patients. It was suggested that there may be differently suppressive machanisms for Treg in these patients. The elevated Treg cells in PV might be activated and then affect the hematopoietic activity. We believe that Treg cells might involved in the dysfunction of T/NK cells in their disability to downregulate the hematopoietic proliferation in PV. And the expansion of Treg cells may be a feature of PV and associated with the pathogenesis of PV. Further investigation in this abnormality might provide novel therapy clue for this disease. Figure Figure



Sign in / Sign up

Export Citation Format

Share Document