scholarly journals Space of Disse: a stem cell niche in the liver

2019 ◽  
Vol 401 (1) ◽  
pp. 81-95 ◽  
Author(s):  
Dieter Häussinger ◽  
Claus Kordes

Abstract Recent evidence indicates that the plasticity of preexisting hepatocytes and bile duct cells is responsible for the appearance of intermediate progenitor cells capable of restoring liver mass after injury without the need of a stem cell compartment. However, mesenchymal stem cells (MSCs) exist in all organs and are associated with blood vessels which represent their perivascular stem cell niche. MSCs are multipotent and can differentiate into several cell types and are known to support regenerative processes by the release of immunomodulatory and trophic factors. In the liver, the space of Disse constitutes a stem cell niche that harbors stellate cells as liver resident MSCs. This perivascular niche is created by extracellular matrix proteins, sinusoidal endothelial cells, liver parenchymal cells and sympathetic nerve endings and establishes a microenvironment that is suitable to maintain stellate cells and to control their fate. The stem cell niche integrity is important for the behavior of stellate cells in the normal, regenerative, aged and diseased liver. The niche character of the space of Disse may further explain why the liver can become an organ of extra-medullar hematopoiesis and why this organ is frequently prone to tumor metastasis.

Blood ◽  
2010 ◽  
Vol 116 (11) ◽  
pp. 1857-1866 ◽  
Author(s):  
Ilaria Visigalli ◽  
Silvia Ungari ◽  
Sabata Martino ◽  
Hyejung Park ◽  
Martina Cesani ◽  
...  

Abstract The balance between survival and death in many cell types is regulated by small changes in the intracellular content of bioactive sphingolipids. Enzymes that either produce or degrade these sphingolipids control this equilibrium. The findings here described indicate that the lysosomal galactocerebrosidase (GALC) enzyme, defective in globoid cell leukodystrophy, is involved in the maintenance of a functional hematopoietic stem/progenitor cell (HSPC) niche by contributing to the control of the intracellular content of key sphingolipids. Indeed, we show that both insufficient and supraphysiologic GALC activity—by inherited genetic deficiency or forced gene expression in patients' cells and in the disease model—induce alterations of the intracellular content of the bioactive GALC downstream products ceramide and sphingosine, and thus affect HSPC survival and function and the functionality of the stem cell niche. Therefore, GALC and, possibly, other enzymes for the maintenance of niche functionality and health tightly control the concentration of these sphingolipids within HSPCs.


2020 ◽  
Author(s):  
Simone Perottoni ◽  
Nuno G. B. Neto ◽  
Cesare Di Nitto ◽  
Manuela Teresa Raimondi ◽  
Michael G. Monaghan

AbstractThe stem cell niche at the perivascular space in human tissue plays a pivotal role in dictating the overall fate of stem cells within it. Mesenchymal stem cells (MSCs), in particular, experience influential microenvironmental conditions, which induce specific metabolic profiles that affect processes such as cell differentiation and dysregulation of the immunomodulatory funtion. Reports focusing specifically on the metabolic status of MSCs under the effect of pathophysiological stimuli - in terms of flow velocities, shear stresses or oxygen tension – do not model heterogenous gradients, highlighting the need of more advanced models reproducing the metabolic niche. Organ-on-a-chip technology offers the most advanced tools for stem cell niche modelling thus allowing for controlled dynamic culture conditions while profiling tunable oxygen tension gradients. However, current systems for live cell detection of metabolic activity inside microfluidic devices require the integration of microsensors that allow for extracellular measurments only, giving innacurate and indirect information about the metabolic state of cells. Here, we present a metabolic toolbox coupling a miniatuirzed in vitro system for human-MSCs dynamic culture, that mimics microenvironmental conditions of the perivascular niche, with high-resolution imaging of intracellular metabolism. Using Fluorescence Lifetime Imaging Microscopy (FLIM) we monitor the spatial metabolic machinery and correlate it with experimentally validated intracellular oxygen concentration after designing the oxygen tension decay along the fluidic chamber by in silico models prediction. Our platform allows for the subjection of a metabolic profile to MSCs, mimicking the physiological niche in space and time, and its real-time monitoring representing a functional tool for modelling perivascular niches, relevant diseases and metabolic-related uptake of pharmaceuticals.


2017 ◽  
Author(s):  
Wei Dai ◽  
Amy Peterson ◽  
Thomas Kenney ◽  
Denise J. Montell

AbstractAdult stem cells commonly give rise to transit-amplifying progenitors, whose progeny differentiate into distinct cell types. Signals within the stem cell niche maintain the undifferentiated state. However it is unclear whether or how niche signals might also coordinate fate decisions within the progenitor pool. Here we use quantitative microscopy to elucidate distinct roles for Wnt, Hedgehog (Hh), and Notch signalling in progenitor development in the Drosophila ovary. Follicle stem cells (FSCs) self-renew and produce precursors whose progeny adopt distinct polar, stalk, and main body cell fates. We show that a steep gradient of Wnt signalling maintains a multipotent state in proximally located progenitor cells by inhibiting expression of the cell fate determinant Eyes Absent (Eya). A shallower gradient of Hh signalling controls the proliferation to differentiation transition. The combination of Notch and Wnt signalling specifies polar cells. These findings reveal a mechanism by which multiple niche signals coordinate cell fate diversification of progenitor cells.


Development ◽  
2021 ◽  
Vol 148 (11) ◽  
Author(s):  
Philip Greulich ◽  
Ben D. MacArthur ◽  
Cristina Parigini ◽  
Rubén J. Sánchez-García

ABSTRACT Adult tissues in multicellular organisms typically contain a variety of stem, progenitor and differentiated cell types arranged in a lineage hierarchy that regulates healthy tissue turnover. Lineage hierarchies in disparate tissues often exhibit common features, yet the general principles regulating their architecture are not known. Here, we provide a formal framework for understanding the relationship between cell molecular ‘states’ and cell ‘types’, based on the topology of admissible cell state trajectories. We show that a self-renewing cell type – if defined as suggested by this framework – must reside at the top of any homeostatic renewing lineage hierarchy, and only there. This architecture arises as a natural consequence of homeostasis, and indeed is the only possible way that lineage architectures can be constructed to support homeostasis in renewing tissues. Furthermore, under suitable feedback regulation, for example from the stem cell niche, we show that the property of ‘stemness’ is entirely determined by the cell environment, in accordance with the notion that stem cell identities are contextual and not determined by hard-wired, cell-intrinsic characteristics. This article has an associated ‘The people behind the papers’ interview.


Lab on a Chip ◽  
2021 ◽  
Author(s):  
Simone Perottoni ◽  
Nuno G. B. Neto ◽  
Cesare Di Nitto ◽  
Ruslan I. Dmitriev ◽  
Manuela Teresa Raimondi ◽  
...  

The stem cell niche at the perivascular space plays a role in dictating the fate of stem cells within it. This study predicts in silico and models the perivascular space, in a miniaturised bioreactor, with non-invasive assessment of cell metabolism.


2011 ◽  
Vol 2011 ◽  
pp. 1-10 ◽  
Author(s):  
Andrew J. Lilly ◽  
William E. Johnson ◽  
Christopher M. Bunce

The concept of the haematopoietic stem cell (HSC) niche was formulated by Schofield in the 1970s, as a region within the bone marrow containing functional cell types that can maintain HSC potency throughout life. Since then, ongoing research has identified numerous cell types and a plethora of signals that not only maintain HSCs, but also dictate their behaviour with respect to homeostatic requirements and exogenous stresses. It has been proposed that there are endosteal and vascular niches within the bone marrow, which are thought to regulate different HSC populations. However, recent data depicts a more complicated picture, with functional crosstalk between cells in these two regions. In this review, recent research into the endosteal/vascular cell types and signals regulating HSC behaviour are considered, together with the possibility of a single subcompartmentalised niche.


2020 ◽  
Vol 11 (1) ◽  
Author(s):  
Jian-Yun Ge ◽  
Yun-Wen Zheng ◽  
Tomonori Tsuchida ◽  
Kinji Furuya ◽  
Hiroko Isoda ◽  
...  

Abstract Background As a critical cellular component in the hepatic stem cell niche, hepatic stellate cells (HSCs) play critical roles in regulating the expansion of hepatic stem cells, liver regeneration, and fibrogenesis. However, the signaling of HSCs, particularly that involved in promoting hepatic stem cell expansion, remains unclear. While the overexpression of galectins has been identified in regenerating liver tissues, their involvement in cell-cell interactions between HSCs and hepatic stem cells remains to be elucidated. Methods To generate a liver regeneration rat model and establish a hepatic oval cell microenvironment as a stem cell niche, 2-acetylaminofluorene treatment plus partial hepatectomy was performed. Immunofluorescence staining was conducted to detect the emergence of hepatic stem cells and their niche. Liver parenchymal cells, non-parenchymal cells, and HSCs were isolated for gene and protein expression analysis by qPCR or western blotting. To evaluate the effect of galectins on the colony-forming efficiency of hepatic stem cells, c-Kit−CD29+CD49f+/lowCD45−Ter-119− cells were cultured with recombinant galectin protein, galectin antibody, galectin-producing HSCs, and galectin-knockdown HSCs. Results Following liver injury, the cytokeratin 19+ ductal cells were robustly induced together with the emergence of OV6+CD44+CD133+EpCAM+ hepatic stem cells. The activated desmin+ HSCs were recruited around the periportal area and markedly enriched in the galectin-positive domain compared to the other non-parenchymal cells. Notably, the HSC fraction isolated from regenerating liver was accompanied by dramatically elevated gene and protein expression of galectins. Hepatic stem cells co-cultured with HSCs significantly enhanced colony-forming efficiency. Conversely, single or double knockdown of galectin-1 and galectin-3 led into a significant function loss, impaired the co-cultured hepatic stem cells to attenuated colony size, inhibited colony frequency, and reduced total cell numbers in colonies. On the other hand, the promotive function of galectins was further confirmed by recombinant galectin protein supplementation and galectins blocking antibodies. Conclusions Our findings, for the first time, demonstrated that galectins from activated HSCs contribute to hepatic stem cell expansion during liver regeneration, suggesting that galectins serve as important stem cell niche components.


2005 ◽  
Vol 8 (11) ◽  
Author(s):  
G. Chepko

At least four cell types in mouse mammary epithelium, three in human, and three in cow are now known to be proliferation competent. Some evidence indicates that pregnancy may confer proliferative competency on a new cell type. These cells are widely seen as stem and progenitor cells that maintain the epithelium and produce lactational units during pregnancy. Evolutionarily conserved developmental signaling pathways active in germinal and neuronal stem cell proliferation and differentiation in drosophila and mammalian development are implicated in mammary tumorigenesis. In adult tissues this signaling is retained, is regulated by stem cell niches and operates to create new tissue and maintain tissue form and integrity. Disruption of this signaling may abrogate maintenance of the stem cell niche and lead to preneoplastic conditions.


2020 ◽  
Author(s):  
Madalina-Gabriela Barbu ◽  
Andreea-Elena Boboc ◽  
Lidia Filip ◽  
Oana-Larisa Bugnar ◽  
Dragos Cretoiu ◽  
...  

Stem cells are defined as undifferentiated cells that are able to unlimitedly renew themselves within controlled conditions and to differentiate into a multitude of mature cell types. Skeletal muscle stem cells, represented predominantly by satellite cells, show a variable capability of self-renewal and myogenic differentiation. They were found to be involved not only in the growth of myofibers during neonatal and juvenile life but also in the regeneration of skeletal muscles after an injury. The microenvironment in which stem cells are nourished and maintained dormant preceding division and differentiation is known as “niche.” The niche consists of myofibers, which are believed to modulate the active/inactive state of the stem cells, extracellular matrix, neural networks, blood vessels, and a multitude of soluble molecules. It was observed that changes in the composition of the niche have an impact on the stem cell functions and hierarchy. Furthermore, it seems that its layout is variable throughout the entire life, translating into a decrease in the regenerative capacity of satellite cells in aged tissues. The scope of this chapter is to provide a detailed view of the changes that occur in the skeletal stem cell niche during life and to analyze their implications on tissue regeneration. Future studies should focus on developing new therapeutic tools for diseases involving muscle atrophy.


2020 ◽  
Author(s):  
Jason T. Serviss ◽  
Nathanael Andrews ◽  
Agneta B. Andersson ◽  
Ewa Dzwonkowska ◽  
Rosan Heijboer ◽  
...  

AbstractCellular identity in complex multicellular organisms is strictly maintained over the course of life. This control is achieved in part by the organ structure itself, such that neighboring cells influence each other’s identity. However, large-scale investigation of the cellular interactome has been technically challenging. Here, we develop CIM-seq, an unsupervised and high-throughput method to analyze direct physical cell-cell interactions between every cell type in a given tissue. CIM-seq is based on RNA sequencing of incompletely dissociated cells, followed by computational deconvolution of these into their constituent cell types using machine learning. We use CIM-seq to define the cell interaction landscape of the mouse small intestinal and colonic epithelium, uncovering both known and novel interactions. Specifically, we find that the general architecture of the stem cell niche is radically different between the two tissues. In small intestine, the stem-Paneth cell interaction forms an exceptionally strong and exclusive niche, in which Paneth cells provide Wnt ligands1. In colonic epithelium, no similar compartment exists to support stem cells, and Wnt signaling is provided by a mesenchymal cell layer2,3. However, colonic stem cells are supported by an adjacent, previously unrecognized goblet cell subtype expressing the wound-healing marker Plet1, which is also highly upregulated during regeneration of colon epithelium. These results identify novel cellular interactions specific for the colonic stem cell niche and suggest an additional level of structural control in the colon. CIM-seq is broadly applicable to studies that aim to simultaneously investigate the constituent cell types and the global interaction profile in a specific tissue.


Sign in / Sign up

Export Citation Format

Share Document