Synthesis and Characterization of Cadmium Sulfide Nanoparticles via a Simple Thermal Decompose Method

2016 ◽  
Vol 35 (10) ◽  
pp. 1013-1016
Author(s):  
Hamideh Seyghalkar ◽  
Mohammad Sabet ◽  
Masoud Salavati-Niasari

AbstractIn this work, cadmium sulfide (CdS) nanoparticles were synthesized from a new Cd-octanoate complex via a simple thermal decompose method. The crystallinity of the product was obtained from X-ray diffraction (XRD) pattern. The morphology and product size were analyzed via scanning electron microscopy (SEM) and transmission electron microscopy (TEM). Also Fourier transform infrared (FT-IR) spectroscopy was used to investigate the CdS surface purity. Finally, the optical properties of the product were obtained from photoluminescence (PL) spectroscopy.

2012 ◽  
Vol 174-177 ◽  
pp. 508-511
Author(s):  
Lin Lin Yang ◽  
Yong Gang Wang ◽  
Yu Jiang Wang ◽  
Xiao Feng Wang

BiFeO3 polyhedrons had been successfully synthesized via a hydrothermal method. The as-prepared products were characterized by power X-ray diffraction (XRD) pattern, scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The possible mechanisms for the formation of BiFeO3 polyhedrons were discussed. Though comparison experiments, it was found that the kind of precursor played a key role on the morphology control of BiFeO3 crystals.


2020 ◽  
Vol 32 (6) ◽  
pp. 1505-1510
Author(s):  
Ahmad Husain ◽  
Mohd Urooj Shariq ◽  
Anees Ahmad

In present study, the synthesis and characterization of a novel polypyrrole (PPy)/tin oxide (SnO2)/MWCNT nanocomposite along with pristine polypyrrole is reported. These materials have been studied for their structural and morphological properties by FT-IR spectroscopy, X-ray diffraction (XRD), scanning electron microscopy (SEM) and transmission electron microscopy (TEM) techniques. PPy/SnO2/MWCNT nanocomposite has been converted into a pellet-shaped sensor, and its ammonia sensing studies were carried out by calculating the variation in the DC electrical conductivity at different concentration of ammonia ranging from 10 to 1500 ppm. The sensing response of the sensor was determined at 1500, 1000, 500, 200, 100 and 10 ppm and found to be 70.4, 66.1, 62.2, 55.4, 50.8 and 39.7%, respectively The sensor showed a complete reversibility at lower concentrations along with excellent selectivity and stability. Finally, a sensing mechanism was also proposed involving polarons (charge carriers) of polypyrrole and lone pairs of ammonia molecules


2016 ◽  
Vol 35 (6) ◽  
pp. 559-566 ◽  
Author(s):  
Elaheh Esmaeili ◽  
Mohammad Sabet ◽  
Masoud Salavati-Niasari ◽  
Kamal Saberyan

AbstractPbS nanostructures were synthesized successfully via hydrothermal approach with a new precursor. The products were characterized with X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), and UV–Vis diffuse reflectance spectroscopy (DRS). The effect of different sulfur sources were investigated on product size and morphology.


2013 ◽  
Vol 32 (2) ◽  
pp. 157-162 ◽  
Author(s):  
Mahdiyeh Esmaeili-Zare ◽  
Masoud Salavati-Niasari ◽  
Davood Ghanbari

AbstractMercury selenide nanostructures were synthesized from the reaction of N, N′-bis(salicylidene)propane-1,3-diamine mercury complex, (Hg(Salpn)) as a novel precursor, via sonochemical method. The effect of different surfactant on the morphology and particle size of the products was investigated. Products were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), Fourier transform infrared (FT-IR) spectroscopy and X-ray energy dispersive spectroscopy (EDS).


2016 ◽  
Vol 2016 ◽  
pp. 1-8 ◽  
Author(s):  
Chaturbhuj K. Saurabh ◽  
Asniza Mustapha ◽  
M. Mohd. Masri ◽  
A. F. Owolabi ◽  
M. I. Syakir ◽  
...  

Cellulose nanofibers (CNF) were isolated fromGigantochloa scortechiniibamboo fibers using sulphuric acid hydrolysis. This method was compared with pulping and bleaching process for bamboo fiber. Scanning electron microscopy, transmission electron microscopy, Fourier transform infrared spectroscopy, X-ray diffraction, and thermogravimetric analysis were used to determine the properties of CNF. Structural analysis by FT-IR showed that lignin and hemicelluloses were effectively removed from pulp, bleached fibers, and CNF. It was found that CNF exhibited uniform and smooth morphological structures, with fiber diameter ranges from 5 to 10 nm. The percentage of crystallinity was significantly increased from raw fibers to cellulose nanofibers, microfibrillated, along with significant improvement in thermal stability. Further, obtained CNF were used as reinforcement material in epoxy based nanocomposites where tensile strength, flexural strength, and modulus of nanocomposites improved with the addition of CNF loading concentration ranges from 0 to 0.7%.


2015 ◽  
Vol 1786 ◽  
pp. 57-63
Author(s):  
Vasuda Bhatia ◽  
Bhawana Singh ◽  
Vinod K. Jain

ABSTRACTNano-graphite oxide has been synthesized from graphite flakes using modified Hummer’s method. Fourier transform infrared (FT-IR) data, x-ray diffraction (XRD) and transmission electron microscopy (TEM) revealed functionalization of the synthesised nano-graphitic platelets with oxygenated bonds. Using thermal embedding technique for the fabrication of self-assembled films, electrodes of nano-graphite oxide have been fabricated for enzyme free detection of cholesterol electrochemically. The electrodes provided a linear response for the enzyme less detection in the range of 50mg/dl to 500mg/dl with a correlation coefficient, R, of 0.99784 and sensitivity of 1.0587 µA/mg.


2014 ◽  
Vol 2014 ◽  
pp. 1-9 ◽  
Author(s):  
G. Sathiyadevi ◽  
B. Loganathan ◽  
B. Karthikeyan

The solvent-mediated eco-friendly monodispersed Ag/Pd bimetallic nanocomposites (BNCs) having thick core and thin shell have been prepared through novel green chemical solvent reduction method. Reducing solvent, dimethyl formamide (DMF) is employed for the controlled green synthesis. Characterization of the synthesized Ag/Pd BNCs has been done by x-ray diffraction (XRD) studies, high-resolution scanning electron microscopy (HR-SEM), energy-dispersive X-ray analysis (EDX), and high-resolution transmission electron microscopy (HR-TEM) with selected area electron diffraction (SAED) pattern. The nature of the interaction of L-cysteine with Ag/Pd BNCs has been studied by using surface plasmon spectroscopy, Fourier transform-infrared spectroscopy (FT-IR), cyclic voltammetry (CV), and theoretical methods.


2020 ◽  
Vol 32 (8) ◽  
pp. 1961-1966
Author(s):  
Ahmad Husain ◽  
Mohd Urooj Shariq ◽  
Sharique Ahmad ◽  
Anees Ahmad ◽  
Faiz Mohammad

Herein, the synthesis and characterization of a novel polypyrrole (PPy)/zinc oxide (ZnO)/SWCNT nanocomposite together with pristine polypyrrole is reported. These as-prepared materials have been characterized by FT-IR spectroscopy, X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM) and thermogravimetric analysis (TGA) techniques. The PPy/ ZnO/SWCNT nanocomposite is used as a pellet-shaped ammonia sensor. The sensing response is calculated in terms of variation in the DC electrical conductivity at different concentration of ammonia ranging from 50 ppm to 2000 ppm. The sensing response of the sensor is determined at 2000, 1000, 500, 400, 300, 200, 100 and 50 ppm and found to be 76.3, 60.5, 54.8, 52.6, 50.2, 48.5, 40.5 and 36.6%, respectively The sensor displays excellent reversibility along with very high selectivity and stability. Finally, a sensing mechanism is also proposed involving polarons (charge carriers) of polypyrrole and lone pairs of electrons of ammonia molecules.


2016 ◽  
Vol 35 (5) ◽  
pp. 493-498
Author(s):  
Masoud Salavati-Niasari ◽  
Mahdiyeh Esmaeili-Zare ◽  
Mina Gholami-Daghian ◽  
Samira Bagheri

AbstractManganese oxyhydroxide (MnOOH) nanoparticles were synthesized by the reaction of [Mn(Hsal)2] complex and NaOH in the presence of ultrasound irradiation. In this study, the effect of different reaction parameters such as type of solvent, sonication time and type of surfactant on the morphology and the particle size of product were studied. The as-synthesized nanoparticles, with an average size of 10–15 nm, were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), Fourier transform infrared spectra (FT-IR) and energy dispersive spectrometry (EDS). To the best of author’s knowledge, it is the first time that [Mn(Hsal)2] complex is used as manganese source for the synthesis of MnOOH nanoparticles.


2011 ◽  
Vol 121-126 ◽  
pp. 1500-1503
Author(s):  
Hui Juan Ren ◽  
Hua Yang ◽  
De Hui Sun ◽  
Zhen Feng Cui ◽  
Guang Yan Hong

Rare earth europium (Eu(III))-pyromellitic acid (H4L)-1,10-phenanthroline (phen) ternary luminescent complex has been synthesized in polyvinylpyrrolidone (PVP) matrix by precipitation method. The chemical constitution of the complex has been demonstrated as PVP/EuL4/3L(phen)•2H2O by a combination of elemental analysis, inductively coupled plasma-atomic emission spectroscopy (ICP-AES) and Fourier-transform infrared spectroscopy (FT-IR). X-ray diffraction analysis (XRD) has shown that the complex is a new kind of crystal whose structure is totally different from two ligands. The morphology of the complex has been investigated by scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The results have shown that the complex has a rodlike crystal structure and the diameter of the rod is about 400 nm. Thermogravimetric analysis (TG) has indicated that the luminescent complex is thermally stable below 300 °C. Photoluminescence spectra (PL) have revealed that the complex can emit Eu3+ characteristic red fluorescence under ultraviolet excitation.


Sign in / Sign up

Export Citation Format

Share Document