Phase Transformation of Biomedical Metastable β Titanium Alloy during Aging

2009 ◽  
Vol 610-613 ◽  
pp. 1168-1173
Author(s):  
Ai Hong Guo ◽  
Wen Fang Cui ◽  
Yi Zhou Wu ◽  
Xiang Hong Liu ◽  
Lian Zhou

A kind of metastable β type Ti-30Nb-13Zr-0.5Fe (wt.%) alloy for biomedical application was newly designed and developed. In order to exam the phase transformation during aging and its effects on the mechanical properties, the alloy was β solubilized and aged at 350°C-550°C for 4 hours. The microstructures were observed by OM and TEM, and the phase structures were identified by XRD. The tensile tests were performed with various aged microstructures. The results show that a lot of ω phase precipitates during aging at 350°C, leading to the increase of strength and elastic modulus and drastic decrease of plasticity. Aging at 450°C, dot α phase uniformly precipitates from metastable β phase. The good combination of high strength 、high plasticity and low elastic modulus was obtained under this aging condition. With increasing aging temperature and aging time α precipitations coarsen and precipitation free zones (PFZ) along prior β grain boundaries form, which are the main reasons to lower the strength and plasticity.

Materials ◽  
2019 ◽  
Vol 12 (22) ◽  
pp. 3781
Author(s):  
Zhongping He ◽  
Huachu Liu ◽  
Zhenyu Zhu ◽  
Weisen Zheng ◽  
Yanlin He ◽  
...  

Transformation Induced Plasticity (TRIP) steels with silicon–manganese (Si–Mn) as the main element have attracted a lot of attention and great interest from steel companies due to their low price, high strength, and high plasticity. Retained austenite is of primary importance as the source of high strength and high plasticity in Si–Mn TRIP steels. In this work, the cold rolled sheets of Si–Mn low carbon steel were treated with TRIP and Dual Phase (DP) treatment respectively. Then, the microstructure and composition of the Si–Mn low carbon steel were observed and tested. The static tensile test of TRIP steel and DP steel was carried out by a CMT5305 electronic universal testing machine. The self-built true stress–strain curve model of TRIP steel was verified. The simulation results were in good agreement with the experimental results. In addition, the phase transformation energy of retained austenite and the work borne by austenite in the sample during static stretching were calculated. The work done by austenite was 14.5 J, which was negligible compared with the total work of 217.8 J. The phase transformation energy absorption of retained austenite in the sample was 9.12 J. The role of retained austenite in TRIP steel is the absorption of excess energy at the key place where the fracture will occur, thereby increasing the elongation, so that the ferrite and bainite in the TRIP steel can absorb energy for a longer time and withstand more energy.


2020 ◽  
Vol 1158 ◽  
pp. 17-26
Author(s):  
Abraão Silva ◽  
Thiago Figueiredo Azevedo ◽  
Weslley Rick Viana Sampaio ◽  
Luiz Carlos Pereira ◽  
Sandro Griza

TiNbSn alloys have been extensively researched due to several properties they exhibit, including high mechanical strength, low elastic modulus, superelasticity, shape memory effect, biocompatibility. The present study evaluated the cryogenic heat treatment in the Ti35NbxSn alloys (x = 0.0; 2.5; 5.0; 7.5). The alloys were arc melted, cold formed and quenched in both water and liquid nitrogen at-198° C. The Ti35Nb2.5Sn alloy was also aged after exposed to both quenching medium. Microstructure and microhardness analyses were performed. Cryogenic treatment was not enough for transformation of primary β phase into martensitic α” in alloys containing 5 and 7.5% Sn. Cryogenic treatment provided β to α” transformation in alloys containing 0 and 2.5% Sn. The Sn-free alloy was more likely to α" transformation in both quenching medium. The alloys microhardness increased with decrease of both quenching temperature and Sn content. The increase of α" is also related to the increase of the alloy microhardness after aging.


2011 ◽  
Vol 32 (8-9) ◽  
pp. 4598-4602 ◽  
Author(s):  
Chunliu Li ◽  
Yongzhong Zhan ◽  
Wenping Jiang

2018 ◽  
Vol 37 (5) ◽  
pp. 487-493 ◽  
Author(s):  
Zhang Lincai ◽  
Ding Xiaoming ◽  
Ye Wei ◽  
Zhang Man ◽  
Song Zhenya

AbstractAs a special hardenable α titanium alloy, Ti-2.5 Cu alloy was a candidate material for high temperature components requiring high strength and plasticity. The effect of prestrain on the precipitation behaviors was investigated in the present study. Tensile tests show that elongation up to 22 % can be obtained after solid solution (SS) treatment. Thereafter, prestrain in tension with 5 %, 10 %, 15 % and 20 % was carried out for the SS samples and then duplex aging was applied. Transmitting electron microscopy (TEM) investigations show that larger Ti2Cu particles were observed in the prestrained condition than free aging one, as prestrain significantly speeds up the precipitation kinetics. The strength firstly increases and then decreases for the prestrained samples after duplex aging, where the competition between precipitation hardening and recovery softening should be responsible. With the consideration of SS, precipitation and recovery, a strength model for duplex aging combined with prestrain was established, which is in well agreement with experiments. Present study may provide a promising way to obtain the strength of deformed hcp materials in industry application.


2011 ◽  
Vol 409 ◽  
pp. 170-174
Author(s):  
A. Ramarolahy ◽  
Philippe Castany ◽  
Thierry Gloriant ◽  
Frédéric Prima ◽  
P. Laheurte ◽  
...  

Ti-Nb based alloys are well known to their good mechanical properties, shape memory effect, superelasticity, as well as good biocompatibility. The Ti-24Nb (at%) binary alloy presents a shape memory behavior and low elastic modulus. Our study is focused on the improvement of their mechanical properties by adding a third alloying element (oxygen, nitrogen or silicon). Addition of 0.5 at% of N or O modifies drastically the mechanical behavior of Ti-24Nb alloy that exhibits superelastic behavior instead of shape memory one. On the other hand, addition of 0.5 at% of Si increased yield strength of the Ti-24Nb shape memory alloy.


2017 ◽  
Vol 899 ◽  
pp. 191-194
Author(s):  
Sinara Borborema Gabriel ◽  
Jessica Peixoto da Silva Kassya ◽  
Caroline Miranda Jacinto ◽  
Leizy Pâmela Oliveira dos Santos ◽  
Carlos Angelo Nunes ◽  
...  

Several beta titanium alloys were developed for biomedical applications due to the combination of low elasticity modulus, high strength, fatigue resistance and good ductility with excellent corrosion resistance. In this regard, a new metastable beta titanium Ti-12Mo-8Nb alloy was developed, as an alternative for the traditional Ti-6Al-4V alloy, with the substitution of vanadium and aluminum for molybdenum and niobium. The objective of this work was to present the microstructural characterization and mechanical properties of the Ti-12Mo-8Nb alloy, heat treated for 1h at 950oC under high vacuum and then water quenched. The microstructure of the alloy was characterized by X-ray diffraction and optical microscopy. Vickers microhardness and nanoindentation were performed for determination of hardness, Young’s modulus and the ratio of hardness to Young’s modulus. The Ti-12Mo-8Nb microstructure consisted of β phase and the values obtained for the ratio of hardness to Young’s modulus were higher than the Ti-6Al-4V alloy.


2015 ◽  
Vol 816 ◽  
pp. 705-710
Author(s):  
Xiao Peng Wang ◽  
Yu Yong Chen ◽  
Fan Tao Kong ◽  
Shu Long Xiao

Novel bio-composites were synthesized by plasma current activated sintering from the Ti-35Nb-2.5Sn/HA powders ball-milled for 12 h. The aim of this study was to investigate the effects of HA content (5, 10 and 15 wt%) on sintering properties, microstructure and compression properties of Ti-35Nb-2.5Sn/HA bio-composites. Results indicated that sintering rate decreased slightly with the increase of HA content. The phases of sintered composites were mainly˰ڂ˽̤̹˼˰̘̑˼˰Ca3(PO4)2(TCP), TiO2, CaTiO3and TixPy. The grain size of sintered composites reduced with the increasing of HA content, and sintered composites with ultra fine grains were fabricated finally. The compression test showed that all the sintered composites had low elastic modulus and high compression strength. The elastic modulus of Ti-35Nb-2.5Sn/15HA sintered composites was 22GPa with a high strength of 877MPa.


2006 ◽  
Vol 510-511 ◽  
pp. 858-861 ◽  
Author(s):  
Won Yong Kim ◽  
Han Sol Kim ◽  
In Dong Yeo

We report on advanced β-titanium alloys having excellent biocompatibility without containing V or Al that has been known as a toxic element for human body, and on a low elastic modulus to be used in the fields of artificial joint and dental implant in the replacement of natural human bone. Martensite structure with α’ (hcp) or α”(orthorhombic) was observed in Ti-xNb-1.5at.%Si, where x=10-20at.%. The crystal structure of martensite formed from water quenching process was largely dependent upon Nb content but does not on Si content. On the basis of experimental results obtained, it is suggested that Si has an effective role to suppress the precipitation of ω phase leading to reduction in elastic modulus in the metastable β phase region. Metastable β phase region was superior to reduce the elastic modulus than stable β phase region in the present alloy system. The minimum value of elastic modulus was measured to 48GPa.


2019 ◽  
Vol 9 (14) ◽  
pp. 2876 ◽  
Author(s):  
Wei ◽  
Zhang ◽  
Feng ◽  
Xie ◽  
Wu ◽  
...  

The influence of a polypropylene fiber on the tensile properties of a cement-polymer based thin spray-on liner (TSL) was investigated in this study. Two different contents of fiber were added to the liner, yielding two TSL groups. Tensile tests were performed (in accordance with the ASTM D638 standard) on the two groups of specimens as well as the control group at 1, 7, 14, and 28-day curing. The test result verified the large plasticity and low elastic modulus of the TSL compared with the fiber. SEM examination revealed that fibers lying parallel to the load direction ruptured or were pulled out from the matrix, which was beneficial to the tensile strength, but detrimental to the elongation because of their high stiffness. Other fibers lying perpendicular with the load direction were detrimental to both tensile strength and elongation through aggravating the propagation of the cracks. The tensile strength was improved by fiber incorporation, while the elongation was reduced at all curing. The influence of fibers on tensile toughness was uncertain since tensile toughness depended on strength as well as deformity.


Sign in / Sign up

Export Citation Format

Share Document