scholarly journals Transferability between Isolated Joint Torques and a Maximum Polyarticular Task: A Preliminary Study

2016 ◽  
Vol 50 (1) ◽  
pp. 5-14
Author(s):  
Antony Costes ◽  
David Villeger ◽  
Pierre Moretto ◽  
Bruno Watier

AbstractThe aims of this study were to determine if isolated maximum joint torques and joint torques during a maximum polyarticular task (i.e. cycling at maximum power) are correlated despite joint angle and velocity discrepancies, and to assess if an isolated joint-specific torque production capability at slow angular velocity is related to cycling power. Nine cyclists completed two different evaluations of their lower limb maximum joint torques. Maximum Isolated Torques were assessed on isolated joint movements using an isokinetic ergometer and Maximum Pedalling Torques were calculated at the ankle, knee and hip for flexion and extension by inverse dynamics during cycling at maximum power. A correlation analysis was made between Maximum Isolated Torques and respective Maximum Pedalling Torques [3 joints x (flexion + extension)], showing no significant relationship. Only one significant relationship was found between cycling maximum power and knee extension Maximum Isolated Torque (r=0.68, p<0.05). Lack of correlations between isolated joint torques measured at slow angular velocity and the same joint torques involved in a polyarticular task shows that transfers between both are not direct due to differences in joint angular velocities and in mono-articular versus poly articular joint torque production capabilities. However, this study confirms that maximum power in cycling is correlated with slow angular velocity mono-articular maximum knee extension torque.

2019 ◽  
Vol 8 (6) ◽  
pp. 31
Author(s):  
Elif Cengizel ◽  
Cagdas Ozgur Cengizel

The purpose of this research is: (a) to compare the dominant and non-dominant leg isokinetic strength and balance, (b) to compare the balance applied on the same side to different directions and isokinetic strength applied to the same side at different angular velocities and (c) to examine the relationship between the balance and isokinetic strength applied at different angular velocities in female volleyball players. Eleven senior female volleyball players voluntarily participated in the research. Isokinetic knee flexion and extension strength were separately obtained on concentric/concentric dominant and non-dominant leg as 5 repetitions at 60˚.s-1 angular velocity, 10 repetitions at 180˚.s-1 and 15 repetitions at 300˚.s-1. The balance test was performed for both sides in anterior (ANT), posterolateral (PL) and posteromedial (PM) directions. In female volleyball players, there is no significant difference between the dominant and non-dominant leg in terms of isokinetic strength and balance. A significant difference was detected between the balance applied in different directions on the same side and isokinetic force applied at different angular velocities. However, there is not any significant relationship between isokinetic strength and balance in female volleyball players. As a result, there is no isokinetic strength and balance asymmetry in volleyball and there is no relationship between them. This may be an indication of the need for both legs in volleyball.


2002 ◽  
Vol 18 (3) ◽  
pp. 207-217 ◽  
Author(s):  
Mark A. King ◽  
Maurice R. Yeadon

This paper describes a method for defining the maximum torque that can be produced at a joint from isovelocity torque measurements on an individual. The method is applied to an elite male gymnast in order to calculate subject-specific joint torque parameters for the knee joint. Isovelocity knee extension torque data were collected for the gymnast using a two-repetition concentric-eccentric protocol over a 75° range of crank motion at preset crank angular velocities ranging from 20 to 250°s–1. During these isovelocity movements, differences of up to 35° were found between the angle of the dynamometer crank and the knee joint angle of the participant. In addition, faster preset crank angular velocities gave smaller ranges of isovelocity motion for both the crank and joint. The simulation of an isovelocity movement at a joint angular velocity of 150°s–1 showed that, for realistic series elastic component extensions, the angular velocity of the joint can be assumed to be the same as the angular velocity of the contractile component during most of the isovelocity trial. Fitting an 18-parameter exponential function to experimental isovelocity joint torque/ angle/ angular velocity data resulted in a surface that was well behaved over the complete range of angular velocities and within the specified range of joint angles used to calculate the surface.


Author(s):  
Rahid Zaman ◽  
Yujiang Xiang ◽  
Jazmin Cruz ◽  
James Yang

In this study, the three-dimensional (3D) asymmetric maximum weight lifting is predicted using an inverse-dynamics-based optimization method considering dynamic joint torque limits. The dynamic joint torque limits are functions of joint angles and angular velocities, and imposed on the hip, knee, ankle, wrist, elbow, shoulder, and lumbar spine joints. The 3D model has 40 degrees of freedom (DOFs) including 34 physical revolute joints and 6 global joints. A multi-objective optimization (MOO) problem is solved by simultaneously maximizing box weight and minimizing the sum of joint torque squares. A total of 12 male subjects were recruited to conduct maximum weight box lifting using squat-lifting strategy. Finally, the predicted lifting motion, ground reaction forces, and maximum lifting weight are validated with the experimental data. The prediction results agree well with the experimental data and the model’s predictive capability is demonstrated. This is the first study that uses MOO to predict maximum lifting weight and 3D asymmetric lifting motion while considering dynamic joint torque limits. The proposed method has the potential to prevent individuals’ risk of injury for lifting.


2017 ◽  
Vol 14 (5) ◽  
pp. 172988141773189 ◽  
Author(s):  
Taihui Zhang ◽  
Honglei An ◽  
Hongxu Ma

Hydraulic actuated quadruped robot similar to BigDog has two primary performance requirements, load capacity and walking speed, so that it is necessary to balance joint torque and joint velocity when designing the dimension of single leg and controlling its motion. On the one hand, because there are three joints per leg on sagittal plane, it is necessary to firstly optimize the distribution of torque and angular velocity of every joint on the basis of their different requirements. On the other hand, because the performance of hydraulic actuator is limited, it is significant to keep the joint torque and angular velocity in actuator physical limitations. Therefore, it is essential to balance the joint torque and angular velocity which have negative correlation under the condition of constant power of the hydraulic actuator. The main purpose of this article is to optimize the distribution of joint torques and velocity of a redundant single leg with joint physical limitations. Firstly, a modified optimization criterion combining joint torques with angular velocity that takes both support phase and flight phase into account is proposed, and then the modified optimization criterion is converted into a normal quadratic programming problem. A kind of recurrent neural network is used to solve the quadratic program problem. This method avoids tremendous matrix inversion and fits for time-varying system. The achieved optimized distribution of joint torques and velocity is useful for aiding mechanical design and the following motion control. Simulation results presented in this article confirm the efficiency of this optimization algorithm.


2017 ◽  
Vol 31 (9) ◽  
pp. 814-826 ◽  
Author(s):  
Natalia Sánchez ◽  
Ana Maria Acosta ◽  
Roberto Lopez-Rosado ◽  
Arno H. A. Stienen ◽  
Julius P. A. Dewald

Although global movement abnormalities in the lower extremity poststroke have been studied, the expression of specific motor impairments such as weakness and abnormal muscle and joint torque coupling patterns have received less attention. We characterized changes in strength, muscle coactivation and associated joint torque couples in the paretic and nonparetic extremity of 15 participants with chronic poststroke hemiparesis (age 59.6 ± 15.2 years) compared with 8 age-matched controls. Participants performed isometric maximum torques in hip abduction, adduction, flexion and extension, knee flexion and extension, ankle dorsi- and plantarflexion and submaximal torques in hip extension and ankle plantarflexion. Surface electromyograms (EMGs) of 10 lower extremity muscles were measured. Relative weakness (paretic extremity compared with the nonparetic extremity) was measured in poststroke participants. Differences in EMGs and joint torques associated with maximum voluntary torques were tested using linear mixed effects models. Results indicate significant poststroke torque weakness in all degrees of freedom except hip extension and adduction, adductor coactivation during extensor tasks, in addition to synergistic muscle coactivation patterns. This was more pronounced in the paretic extremity compared with the nonparetic extremity and with controls. Results also indicated significant interjoint torque couples during maximum and submaximal hip extension in both extremities of poststroke participants and in controls only during maximal hip extension. Additionally, significant interjoint torque couples were identified only in the paretic extremity during ankle plantarflexion. A better understanding of these motor impairments is expected to lead to more effective interventions for poststroke gait and posture.


2000 ◽  
Vol 88 (3) ◽  
pp. 851-856 ◽  
Author(s):  
Y. Ichinose ◽  
Y. Kawakami ◽  
M. Ito ◽  
H. Kanehisa ◽  
T. Fukunaga

To determine the shortening velocities of fascicles of the vastus lateralis muscle (VL) during isokinetic knee extension, six male subjects were requested to extend the knee with maximal effort at angular velocities of 30 and 150°/s. By using an ultrasonic apparatus, longitudinal images of the VL were produced every 30 ms during knee extension, and the fascicle length and angle of pennation were obtained from these images. The shortening fascicle length with extension of the knee (from 98 to 13° of knee angle; full extension = 0°) was greater (43 mm) at 30°/s than at 150°/s (35 mm). Even when the angular velocity remained constant during the isokinetic range of motion, the fascicle velocity was found to change from 39 to 77 mm/s at 150°/s and from 6 to 19 mm/s at 30°/s. The force exerted by a fascicle changed with the length of the fascicle at changing angular velocities. The peak values of fascicle force and velocity were observed at ∼90 mm of fascicle length. In conclusion, even if the angular velocity of knee extension is kept constant, the shortening velocity of a fascicle is dependent on the force applied to the muscle-tendon complex, and the phenomenon is considered to be caused mainly by the elongation of the elastic element (tendinous tissue).


2005 ◽  
Vol 94 (5) ◽  
pp. 3046-3057 ◽  
Author(s):  
Jonathan Shemmell ◽  
Matthew Forner ◽  
James R. Tresilian ◽  
Stephan Riek ◽  
Benjamin K. Barry ◽  
...  

In this study we attempted to identify the principles that govern the changes in neural control that occur during repeated performance of a multiarticular coordination task. Eight participants produced isometric flexion/extension and pronation/supination torques at the radiohumeral joint, either in isolation (e.g., flexion) or in combination (e.g., flexion–supination), to acquire targets presented by a visual display. A cursor superimposed on the display provided feedback of the applied torques. During pre- and postpractice tests, the participants acquired targets in eight directions located either 3.6 cm (20% maximal voluntary contraction [MVC]) or 7.2 cm (40% MVC) from a neutral cursor position. On each of five consecutive days of practice the participants acquired targets located 5.4 cm (30% MVC) from the neutral position. EMG was recorded from eight muscles contributing to torque production about the radiohumeral joint during the pre- and posttests. Target-acquisition time decreased significantly with practice in most target directions and at both target torque levels. These performance improvements were primarily associated with increases in the peak rate of torque development after practice. At a muscular level, these changes were brought about by increases in the rates of recruitment of all agonist muscles. The spatiotemporal organization of muscle synergies was not significantly altered after practice. The observed adaptations appear to lead to performances that are generalizable to actions that require both greater and smaller joint torques than that practiced, and may be successfully recalled after a substantial period without practice. These results suggest that tasks in which performance is improved by increasing the rate of muscle activation, and thus the rate of joint torque development, may benefit in terms of the extent to which acquired levels of performance are maintained over time.


2021 ◽  
Vol 13 (2) ◽  
Author(s):  
Yujiang Xiang ◽  
Shadman Tahmid ◽  
Paul Owens ◽  
James Yang

Abstract Box delivery is a complicated task and it is challenging to predict the box delivery motion associated with the box weight, delivering speed, and location. This paper presents a single task-based inverse dynamics optimization method for determining the planar symmetric optimal box delivery motion (multi-task jobs). The design variables are cubic B-spline control points of joint angle profiles. The objective function is dynamic effort, i.e., the time integral of the square of all normalized joint torques. The optimization problem includes various constraints. Joint angle profiles are validated through experimental results using root-mean-square-error (RMSE) and Pearson’s correlation coefficient. This research provides a practical guidance to prevent injury risks in joint torque space for workers who lift and deliver heavy objects in their daily jobs.


Proceedings ◽  
2020 ◽  
Vol 49 (1) ◽  
pp. 69
Author(s):  
Taisei Mori ◽  
Yohei Ogino ◽  
Akihiro Matsuda ◽  
Yumiko Funabashi

In this paper, 3-axial knee joint torques given by compression sports tights were performed by numerical simulations using 3-dimensional computer graphics of a human model. Running motions of the human model were represented as the 3-dimensional computer graphics, and the running motions were determined by the motion capturing system of human subjects. Strain distribution on the surface of the 3-dimentional computer graphics of the human model was applied to the boundary conditions of the numerical simulations. An anisotropic hyperelastic model considering stress softening of fabric materials was implemented to reproduce the mechanical characteristics of the compression sports tights. Based on the strain-time relationships, knee joint torques in 3-dimentional coordinates given by the compression sports tights were calculated. As a result, the three types of knee joint torque generated by the compression sports tights in running motions were calculated. From the calculated results, the maximum value of flexion/extension, varus/valgus, and internal/external knee joint torques were given as 2.52, 0.59, and 0.31 Nm, respectively. The effect of compression sports tights on the knee joint was investigated.


1997 ◽  
Vol 119 (3) ◽  
pp. 237-240 ◽  
Author(s):  
N. Yoganandan ◽  
F. A. Pintar

While the majority of experimental cervical spine biomechanics research has been conducted using slowly applied forces and/or moments, or dynamically applied forces with contact, little research has been performed to delineate the biomechanics of the human neck under inertial “noncontact” type forces. This study was designed to develop a comprehensive methodology to induce these loads. A minisled pendulum experimental setup was designed to test specimens (such as human cadaver neck) at subfailure or failure levels under different loading modalities including flexion, extension, and lateral bending. The system allows acceleration/deceleration input with varying wave form shapes. The test setup dynamically records the input and output strength information such as forces, accelerations, moments, and angular velocities; it also has the flexibility to obtain the temporal overall and local kinematic data of the cervical spine components at every vertebral level. These data will permit a complete biomechanical structural analysis. In this paper, the feasibility of the methodology is demonstrated by subjecting a human cadaver head-neck complex with intact musculature and skin under inertial flexion and extension whiplash loading at two velocities.


Sign in / Sign up

Export Citation Format

Share Document