scholarly journals Effects of ethnicity on the relationship between vertical jump and maximal power on a cycle ergometer

2016 ◽  
Vol 51 (1) ◽  
pp. 209-216 ◽  
Author(s):  
Majdi Rouis ◽  
Laure Coudrat ◽  
Hamdi Jaafar ◽  
Elvis Attiogbé ◽  
Henry Vandewalle ◽  
...  

Abstract The aim of this study was to verify the impact of ethnicity on the maximal power-vertical jump relationship. Thirty-one healthy males, sixteen Caucasian (age: 26.3 ± 3.5 years; body height: 179.1 ± 5.5 cm; body mass: 78.1 ± 9.8 kg) and fifteen Afro-Caribbean (age: 24.4 ±2.6 years; body height: 178.9 ± 5.5 cm; body mass: 77.1 ± 10.3 kg) completed three sessions during which vertical jump height and maximal power of lower limbs were measured. The results showed that the values of vertical jump height and maximal power were higher for Afro-Caribbean participants (62.92 ± 6.7 cm and 14.70 ± 1.75 W∙kg-1) than for Caucasian ones (52.92 ± 4.4 cm and 12.75 ± 1.36 W∙kg-1). Moreover, very high reliability indices were obtained on vertical jump (e.g. 0.95 < ICC < 0.98) and maximal power performance (e.g. 0.75 < ICC < 0.97). However, multiple linear regression analysis showed that, for a given value of maximal power, the Afro-Caribbean participants jumped 8 cm higher than the Caucasians. Together, these results confirmed that ethnicity impacted the maximal power-vertical jump relationship over three sessions. In the current context of cultural diversity, the use of vertical jump performance as a predictor of muscular power should be considered with caution when dealing with populations of different ethnic origins.

Author(s):  
Igor Ranisavljev ◽  
Milan Matić ◽  
Nenad Janković

The goal of the present study was to explore the relationship between maximum strength, the vertical jump, acceleration and change of direction performance in healthy young male students. The sample of variables included the following variables: body mass (BM), one repetition maximum on the half-squat test (Squat 1RM), one repetition maximum normalized for body mass (Squat 1RM_rel), peak power during the concentric phase of countermovement jump (Ppeak CMJ), vertical jump height during CMJ (CMJ_H), time for the 20m sprint (20m Srint) and time for the agility T-Test (Agility T-Test). The relationship was tested with the Pearson Coefficient of linear correlation (r). The results showed significant correlation between body mass with Squat 1RM_rel and peak concentric power during CMJ (r=-.424, and r=.377, respectively). Peak concentric power during CMJ additionally has a significant correlation with the change of direction abilities, 20m sprint, and vertical jump height, (r=-.401; r=-.467; r=.656; p<0.05, respectively). Also, significant correlation was determined between the 20m Sprint and Agility T-Test (r=.443; r=-.570, respectively), and Agility T-Test vertical jump height (r=-.498).  The level of relationships between maximum strength, acceleration, COD and CMJ may be attributable to differences in the control and coordination of several muscle groups during execution of these tests.


2021 ◽  
Vol 11 (17) ◽  
pp. 8103
Author(s):  
Kathleen A. Bieryla ◽  
Jeremy A. Cook ◽  
Ryan C. Snyder

The purpose of this study was to investigate the way in which anthropometric and fitness measures vary by class year before and after a Division I female field hockey competitive season. Anthropometric (mass and percent body fat) and fitness measures (vertical jump and Yo-Yo Intermittent Recovery Test 1 (Yo-Yo IR1) distance) were collected on 16 athletes (mean ± SD: age = 19.5 ± 0.9 years) before and after a competitive season. Class year, based on the athlete’s year in college, was used to group athletes in the study. Body mass, vertical jump height, and Yo-Yo IR1 distance all increased pre to post season (p < 0.05). First-year athletes had a significantly lower body mass, vertical jump height and Yo-Yo IR1 distance compared to other class years across the testing period (p < 0.05). Post season levels for first-years were lower than both pre and post season levels for sophomore or junior athletes. Team mean vertical jump increased 8.9%, with all but two athletes improving. Team mean Yo-Yo IR1 distance increased 16.4%. Athlete training over the course of the study was designed to improve on field playing performance and training was not directly select to improve measures in the study; therefore, the potential success of integrating fitness, speed, and strength development into technical training sessions is indicated. Coaches should be aware that first-year athletes may not be at the same level of conditioning as sophomores and juniors. Coaches should work specifically with the first-year athletes during the season to monitor their fitness levels.


Author(s):  
Jozo Grgic ◽  
Sandro Venier ◽  
Pavle Mikulic

Purpose: To compare the acute effects of caffeine and placebo ingestion with a control condition (ie, no supplementation) on vertical jump performance. Methods: The sample for this study consisted of 26 recreationally trained men. Following the familiarization visit, the subjects were randomized in a double-blind manner to 3 main conditions: placebo, caffeine, and control. Caffeine was administered in the form of a gelatin capsule in the dose of 6 mg·kg body weight−1. Placebo was also administered in the form of a gelatin capsule containing 6 mg·kg−1 of dextrose. Vertical jump performance was assessed using a countermovement jump performed on a force platform. Analyzed outcomes were vertical jump height and maximal power output. Results: For vertical jump height, significant differences were observed between placebo and control conditions (g = 0.13; 95% confidence interval [CI], 0.03–0.24; +2.5%), caffeine and control conditions (g = 0.31; 95% CI, 0.17–0.50; +6.6%), and caffeine and placebo conditions (g = 0.19; 95% CI, 0.06–0.34; +4.0%). For maximal power output, no significant main effect of condition (P = .638) was found. Conclusions: Ingesting a placebo or caffeine may enhance countermovement jump performance compared with the control condition, with the effects of caffeine versus control appearing to be greater than the effects of placebo versus control. In addition, caffeine was ergogenic for countermovement jump height compared with placebo. Even though caffeine and placebo ingestion improved vertical jump height, no significant effects of condition were found on maximal power output generated during takeoff.


2021 ◽  
Author(s):  
Erik Vanegas ◽  
Yolocuauhtli Salazar ◽  
Raúl Igual ◽  
Inmaculada Plaza

BACKGROUND Vertical jump height is widely used in health care and sports fields to assess muscle strength and power from lower limb muscle groups. Different approaches have been proposed for vertical jump height measurement. Some commonly used approaches need no sensor at all; however, these methods tend to overestimate the height reached by the subjects. There are also novel systems using different kind of sensors like force-sensitive resistors, capacitive sensors, and inertial measurement units, among others, to achieve more accurate measurements. OBJECTIVE The objective of this study is twofold. The first objective is to validate the functioning of a developed low-cost system able to measure vertical jump height. The second objective is to assess the effects on obtained measurements when the sampling frequency of the system is modified. METHODS The system developed in this study consists of a matrix of force-sensitive resistor sensors embedded in a mat with electronics that allow a full scan of the mat. This mat detects pressure exerted on it. The system calculates the jump height by using the flight-time formula, and the result is sent through Bluetooth to any mobile device or PC. Two different experiments were performed. In the first experiment, a total of 38 volunteers participated with the objective of validating the performance of the system against a high-speed camera used as reference (120 fps). In the second experiment, a total of 15 volunteers participated. Raw data were obtained in order to assess the effects of different sampling frequencies on the performance of the system with the same reference device. Different sampling frequencies were obtained by performing offline downsampling of the raw data. In both experiments, countermovement jump and countermovement jump with arm swing techniques were performed. RESULTS In the first experiment an overall mean relative error (MRE) of 1.98% and a mean absolute error of 0.38 cm were obtained. Bland-Altman and correlation analyses were performed, obtaining a coefficient of determination equal to <i>R</i><sup>2</sup>=.996. In the second experiment, sampling frequencies of 200 Hz, 100 Hz, and 66.6 Hz show similar performance with MRE below 3%. Slower sampling frequencies show an exponential increase in MRE. On both experiments, when dividing jump trials in different heights reached, a decrease in MRE with higher height trials suggests that the precision of the proposed system increases as height reached increases. CONCLUSIONS In the first experiment, we concluded that results between the proposed system and the reference are systematically the same. In the second experiment, the relevance of a sufficiently high sampling frequency is emphasized, especially for jump trials whose height is below 10 cm. For trials with heights above 30 cm, MRE decreases in general for all sampling frequencies, suggesting that at higher heights reached, the impact of high sampling frequencies is lesser.


2020 ◽  
Vol 8 (8) ◽  
pp. 232596712094425
Author(s):  
Laura C. Dickerson ◽  
Alexander T. Peebles ◽  
Joseph T. Moskal ◽  
Thomas K. Miller ◽  
Robin M. Queen

Background: Athletes who return to sport (RTS) after anterior cruciate ligament reconstruction (ACLR) often have reduced physical performance and a high reinjury rate. Additionally, it is currently unclear how physical performance measures can change during the RTS transition and with the use of a functional knee brace. Purpose/Hypothesis: The purpose of this study was to examine the effects of time since surgery (at RTS and 3 months after RTS) and of wearing a brace on physical performance in patients who have undergone ACLR. We hypothesized that physical performance measures would improve with time and would not be affected by brace condition. Study Design: Controlled laboratory study. Methods: A total of 28 patients who underwent ACLR (9 males, 19 females) completed physical performance testing both after being released for RTS and 3 months later. Physical performance tests included the modified agility t test (MAT) and vertical jump height, which were completed with and without a knee brace. A repeated-measures analysis of variance determined the effect of time and bracing on performance measures. Results: The impact of the knee brace was different at the 2 time points for the MAT side shuffle ( P = .047). Wearing a functional knee brace did not affect any other physical performance measure. MAT times improved for total time ( P < .001) and backpedal ( P < .001), and vertical jump height increased ( P = .002) in the 3 months after RTS. Conclusion: The present study showed that physical performance measures of agility and vertical jump height improved in the first 3 months after RTS. This study also showed that wearing a knee brace did not hinder physical performance. Clinical Relevance: Wearing a functional knee brace does not affect physical performance, and therefore a brace could be worn during the RTS transition without concern. Additionally, physical performance measures may still improve 3 months past traditional RTS, therefore justifying delayed RTS.


2018 ◽  
Vol 27 (5) ◽  
pp. 491-502
Author(s):  
Thomas M. Newman ◽  
Giampietro L. Vairo ◽  
William E. Buckley

Ankle sprains represent a common musculoskeletal injury that clinicians are tasked with preventing and treating. Because of the prevalence of this injury, ankle braces have been designed to prophylactically protect the joint and reduce the incidence of repetitive sprains. Although an abundance of literature exists focusing on the efficacy of braces in preventing ankle sprains in young, healthy, and physically active populations, there is a scarcity of evidence specific to the impact of these apparatuses on functional performance; therefore, the purpose of this critically appraised topic (CAT) is to investigate the effects of ankle braces on functional performance measures in such individuals. The outcomes of this CAT will assist sport rehabilitation specialists with informed clinical decision making in managing young, healthy, and physically active populations using ankle braces. Do ankle braces hinder functional performance measures when compared with an unbraced condition in a young, healthy, and physically active population? A minimum of level II evidence research studies were surveyed for this CAT. For this CAT, 1 randomized controlled trial and 3 prospective cohort studies were selected. One study found a statistically significant main effect of increased agility run times while participants wore ankle braces. Another study demonstrated a statistically significant decrease in vertical jump height and ankle range of motion while wearing braces. No other statistically significant findings were reported among studies comparing unbraced with braced conditions. Current data indicate that young, healthy, and physically active individuals may experience varied performance effects when executing specific functional performance tasks while wearing ankle braces. In general, bracing does not appear to significantly impair performance on most functional tasks; however, decrements were noted to increases in agility run time and decreases in vertical jump height. Subsequent analysis indicated that a brace may result in decreased ankle plantarflexion, dorsiflexion, eversion, and inversion range of motion, which may underpin noted performance deficits.


2014 ◽  
Vol 40 (1) ◽  
pp. 113-120 ◽  
Author(s):  
William E. Amonette ◽  
Denham Brown ◽  
Terry L. Dupler ◽  
Junhai Xu ◽  
James J. Tufano ◽  
...  

Abstract Relationships between sprinting speed, body mass, and vertical jump kinetics were assessed in 243 male soccer athletes ranging from 10-19 years. Participants ran a maximal 36.6 meter sprint; times at 9.1 (10 y) and 36.6 m (40 y) were determined using an electronic timing system. Body mass was measured by means of an electronic scale and body composition using a 3-site skinfold measurement completed by a skilled technician. Countermovement vertical jumps were performed on a force platform - from this test peak force was measured and peak power and vertical jump height were calculated. It was determined that age (r=-0.59; p<0.01), body mass (r=-0.52; p<0.01), lean mass (r=-0.61; p<0.01), vertical jump height (r=-0.67; p<0.01), peak power (r=-0.64; p<0.01), and peak force (r=-0.56; p<0.01) were correlated with time at 9.1 meters. Time-to-complete a 36.6 meter sprint was correlated with age (r=-0.71; p<0.01), body mass (r=- 0.67; p<0.01), lean mass (r=-0.76; p<0.01), vertical jump height (r=-0.75; p<0.01), peak power (r=-0.78; p<0.01), and peak force (r=-0.69; p<0.01). These data indicate that soccer coaches desiring to improve speed in their athletes should devote substantive time to fitness programs that increase lean body mass and vertical force as well as power generating capabilities of their athletes. Additionally, vertical jump testing, with or without a force platform, may be a useful tool to screen soccer athletes for speed potential.


2020 ◽  
Vol 71 (1) ◽  
pp. 109-117 ◽  
Author(s):  
Alberto Carvalho ◽  
Paulo Roriz ◽  
Daniel Duarte

AbstractKnowledge of players’ anthropometric profiles may contribute to a better understanding of the differences between their performance levels. For example, vertical jump height, which is a major indicator of a volleyball player’s performance, is influenced by favorable anthropometric variables. This study’s aim was to describe anthropometric profiles of elite female volleyball players competing in the 1st and 2nd divisions in Portugal and to link these profiles with performance skills such as jump height obtained during blocking and spiking actions. Fifty-nine volleyball players were analyzed according to their competitive level, forming three independent groups: GA (n = 20, A1 division, ranked first), GB (n = 21, A1 division, ranked last) and GC (n = 18, A2 division). Anthropometric data collected included body mass and height, arm span, seven skinfolds (triceps, biceps, subscapular, suprailiac, abdominal, thigh and calf), four body perimeters (relaxed brachial, contracted brachial, thigh and calf), and two body diameters (humeral and femoral). Performance data included the height obtained during block and spike actions. Significant differences were found between groups (GA/GB from A1 and GC from A2). Players in the GA had the highest body mass (68.05 ± 6.62 kg, p < 0.05), body height (176.35 ± 6.21 cm, p < 0.05), arm span (177.59 ± 6.09 cm, p < 0.05), lean mass (53.51 ± 4.94 kg, p < 0.05) and vertical jump heights (block: 0.36 ± 0.06 m and spike: 0.43 ± 0.05 m, p < 0.05). As expected, the fat mass percentage of GA players was the lowest (21.30 ± 2.61%). The results suggest that anthropometric profiles of volleyball players may vary according to the competitive level. The higher body mass, body height, arm span, and lean mass presented by GA players in comparison with GC players suggest these variables are important for top-level performance, since these athletes also exhibited higher jump heights. Variables such as height and arm span have a considerable genetic influence and could be important for early talent identification in volleyball. Other variables such as body mass, lean mass and vertical jump performance are more complex, since they also reflect the effects of environmental and training conditions.


10.2196/27336 ◽  
2021 ◽  
Vol 9 (4) ◽  
pp. e27336
Author(s):  
Erik Vanegas ◽  
Yolocuauhtli Salazar ◽  
Raúl Igual ◽  
Inmaculada Plaza

Background Vertical jump height is widely used in health care and sports fields to assess muscle strength and power from lower limb muscle groups. Different approaches have been proposed for vertical jump height measurement. Some commonly used approaches need no sensor at all; however, these methods tend to overestimate the height reached by the subjects. There are also novel systems using different kind of sensors like force-sensitive resistors, capacitive sensors, and inertial measurement units, among others, to achieve more accurate measurements. Objective The objective of this study is twofold. The first objective is to validate the functioning of a developed low-cost system able to measure vertical jump height. The second objective is to assess the effects on obtained measurements when the sampling frequency of the system is modified. Methods The system developed in this study consists of a matrix of force-sensitive resistor sensors embedded in a mat with electronics that allow a full scan of the mat. This mat detects pressure exerted on it. The system calculates the jump height by using the flight-time formula, and the result is sent through Bluetooth to any mobile device or PC. Two different experiments were performed. In the first experiment, a total of 38 volunteers participated with the objective of validating the performance of the system against a high-speed camera used as reference (120 fps). In the second experiment, a total of 15 volunteers participated. Raw data were obtained in order to assess the effects of different sampling frequencies on the performance of the system with the same reference device. Different sampling frequencies were obtained by performing offline downsampling of the raw data. In both experiments, countermovement jump and countermovement jump with arm swing techniques were performed. Results In the first experiment an overall mean relative error (MRE) of 1.98% and a mean absolute error of 0.38 cm were obtained. Bland-Altman and correlation analyses were performed, obtaining a coefficient of determination equal to R2=.996. In the second experiment, sampling frequencies of 200 Hz, 100 Hz, and 66.6 Hz show similar performance with MRE below 3%. Slower sampling frequencies show an exponential increase in MRE. On both experiments, when dividing jump trials in different heights reached, a decrease in MRE with higher height trials suggests that the precision of the proposed system increases as height reached increases. Conclusions In the first experiment, we concluded that results between the proposed system and the reference are systematically the same. In the second experiment, the relevance of a sufficiently high sampling frequency is emphasized, especially for jump trials whose height is below 10 cm. For trials with heights above 30 cm, MRE decreases in general for all sampling frequencies, suggesting that at higher heights reached, the impact of high sampling frequencies is lesser.


2011 ◽  
Vol 45 (4) ◽  
pp. 363-363
Author(s):  
G. Leporace ◽  
L. Metsavaht ◽  
J. Praxedes ◽  
G. Pereira ◽  
S. Pinto ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document